当前位置: X-MOL 学术arXiv.cs.SY › 论文详情
Nonlinear Attitude Estimation for Small UAVs with Low Power Microprocessors
arXiv - CS - Systems and Control Pub Date : 2020-03-30 , DOI: arxiv-2003.13802
Sunsoo Kim; Vaishnav Tadiparthi; Raktim Bhattacharya

Among algorithms used for sensor fusion for attitude estimation in unmanned aerial vehicles, the Extended Kalman Filter (EKF) is the most commonly used for estimation. In this paper, we propose a new version of H2 estimation called extended H2 estimation that can overcome the limitations of the extended Kalman Filter, specifically with respect to computational speed, memory usage, and root mean squared error. We formulate a new attitude-estimation algorithm, where the filter gain is designed offline about a nominal operating point, but the filter dynamics is implemented using the nonlinear system dynamics. We refer to this implementation of the H2 optimal estimator as the extended H2 estimator. The solution presented is tested on two cases, corresponding to slow and rapid motions, and compared against the EKF in the performance metrics mentioned above.
更新日期:2020-04-01

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug