当前位置: X-MOL 学术arXiv.cs.RO › 论文详情
Robust Multiple-Path Orienteering Problem: Securing Against Adversarial Attacks
arXiv - CS - Robotics Pub Date : 2020-03-31 , DOI: arxiv-2003.13896
Guangyao Shi; Lifeng Zhou; Pratap Tokekar

The multiple-path orienteering problem asks for paths for a team of robots that maximize the total reward collected while satisfying budget constraints on the path length. This problem models many multi-robot routing tasks such as exploring unknown environments and information gathering for environmental monitoring. In this paper, we focus on how to make the robot team robust to failures when operating in adversarial environments. We introduce the Robust Multiple-path Orienteering Problem (RMOP) where we seek worst-case guarantees against an adversary that is capable of attacking at most $\alpha$ robots. Our main contribution is a general approximation scheme with bounded approximation guarantee that depends on $\alpha$ and the approximation factor for single robot orienteering. In particular, we show that the algorithm yields a (i) constant-factor approximation when the cost function is modular; (ii) $\log$ factor approximation when the cost function is submodular; and (iii) constant-factor approximation when the cost function is submodular but the robots are allowed to exceed their path budgets by a bounded amount. In addition to theoretical analysis, we perform simulation study for an ocean monitoring application to demonstrate the efficacy of our approach.
更新日期:2020-04-01

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug