当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embeddings of Structured Data
arXiv - CS - Discrete Mathematics Pub Date : 2020-03-27 , DOI: arxiv-2003.12590
Martin Grohe

Vector representations of graphs and relational structures, whether hand-crafted feature vectors or learned representations, enable us to apply standard data analysis and machine learning techniques to the structures. A wide range of methods for generating such embeddings have been studied in the machine learning and knowledge representation literature. However, vector embeddings have received relatively little attention from a theoretical point of view. Starting with a survey of embedding techniques that have been used in practice, in this paper we propose two theoretical approaches that we see as central for understanding the foundations of vector embeddings. We draw connections between the various approaches and suggest directions for future research.
更新日期:2020-03-31

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug