当前位置: X-MOL 学术Mol. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
C-doped boron nitride nanotubes for the catalysis of acetylene hydrochlorination: A density functional theory study
Molecular Catalysis ( IF 4.6 ) Pub Date : 2020-03-31 , DOI: 10.1016/j.mcat.2020.110853
Qi Wang , Guohong Fan , Hong Xu , Xianxian Tu , Xiaohua Wang , Xiangfeng Chu

The mechanism of a novel mercury-free catalyst, carbon-doped boron nitride nanotubes (BNNTs), for acetylene hydrochlorination reaction was investigated by density function theory (DFT) calculations. Two types of carbon-doped BNNTs with different diameters, boron substituted and nitride substituted with carbon, were studied in detail as the catalyst of the acetylene hydrochlorination reaction. Results show the adsorption of C2H2 on carbon-doped BNNTs is dominant in the adsorption process due to the stronger interaction of C2H2 with carbon-doped BNNTs. HCl can be dissociated on carbon-doped BNNTs with small diameter during the adsorption process. The C2H2 is chemically adsorbed on the doped impurity C atom where it is activated to continue the addition reaction with the gaseous HCl molecule. The rate-limiting step is the splitting of HCl molecule and the attack of H and Cl atoms on CC bond of the activated C2H2 to form the transition state. The reaction can take place easily on carbon-doped BNNTs and a low energy barrier of 28.47 kcal/mol is found. The doping site and curvature have a slight impact on the catalytic performance in the reaction based on the comparison of energy barrier. The study reveals that the doped impurity C atom can largely improve the activity of BNNTs, and carbon-doped BNNTs can be an effective non-metal catalyst in the acetylene hydrochlorination reaction.



中文翻译:

碳掺杂氮化硼纳米管催化乙炔盐酸化的密度泛函理论研究

通过密度泛函理论(DFT)计算研究了一种新型的无汞催化剂碳掺杂的氮化硼纳米管(BNNTs)用于乙炔盐酸盐化反应的机理。详细研究了两种不同直径的碳掺杂BNNT,分别是硼取代的碳和氮化碳取代的碳,作为乙炔氢氯化反应的催化剂。结果表明,由于C 2 H 2与碳掺杂BNNT的相互作用更强,因此C 2 H 2在碳掺杂BNNTs上的吸附占主导地位。在吸附过程中,HCl可以在直径较小的碳掺杂BNNT上分解。C 2 H 2被化学吸附在掺杂的杂质C原子上,并在其中被活化以继续与气态HCl分子进行加成反应。限速步骤是HCl分子的分裂以及H和Cl原子对活化的C 2 H 2的C C键的攻击以形成过渡态。该反应可以在掺碳BNNT上轻松进行,并且发现低能垒为28.47 kcal / mol。根据能垒的比较,掺杂位点和曲率对反应中的催化性能影响很小。研究表明,掺杂的杂质C原子可以大大提高BNNTs的活性,而碳掺杂的BNNTs可以作为乙炔氢氯化反应中的一种有效的非金属催化剂。

更新日期:2020-03-31
down
wechat
bug