当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Drying graphene hydrogel fibers for capacitive energy storage
Carbon ( IF 10.9 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.carbon.2020.03.053
Chaojun Wang , Shengli Zhai , Ziwen Yuan , Junsheng Chen , Zixun Yu , Zengxia Pei , Fei Liu , Xuezhang Li , Li Wei , Yuan Chen

Abstract Graphene hydrogel fibers are promising electrode materials for emerging wearable energy storage devices. They shrink significantly (up to 10 times in volume) during drying when trapped solvents are removed, accompanied by complex internal structural transformation. This vital drying process has been ignored in previous research. Here, we present a comprehensive study to correlate the drying of graphene hydrogel fibers with their porous structures and electrochemical properties. Five representative drying conditions involving different temperatures, pressures, and solvent exchanging conditions were compared. We found that first, the average interlayer spacing of stacked graphene nanosheets measured by X-ray diffraction is determined during hydrothermal assembly. During drying, the fast solvent removal causes significant pore closure and creates randomly oriented tortuous pores. On the other hand, the evaporation of solvents provides capillary forces to drive the rearrangement of stacked rGO. Trapping non-volatile solvents in hydrogel rGO fibers can preserve interconnected pores, while freeze-drying leads to non-interconnected pores. Subsequently, different dried graphene fibers have dramatically different specific volumetric capacitance ranging from 5 to 120 F cm−3 and diverse rate capability in capacitive energy storage. These new fundamental insights provide useful guides for controllable assembly of 2D materials into fiber architectures for energy storage applications and beyond.

中文翻译:

用于电容储能的干燥石墨烯水凝胶纤维

摘要 石墨烯水凝胶纤维是用于新兴可穿戴储能设备的有前途的电极材料。当去除残留的溶剂时,它们在干燥过程中会显着收缩(体积最多可达 10 倍),同时伴随着复杂的内部结构转变。这个重要的干燥过程在之前的研究中被忽略了。在这里,我们提出了一项综合研究,将石墨烯水凝胶纤维的干燥与其多孔结构和电化学性能相关联。比较了涉及不同温度、压力和溶剂交换条件的五种代表性干燥条件。我们发现,首先,通过 X 射线衍射测量的堆叠石墨烯纳米片的平均层间距是在水热组装过程中确定的。在干燥过程中,快速溶剂去除导致显着的孔隙闭合并产生随机取向的曲折孔隙。另一方面,溶剂的蒸发提供了毛细管力来驱动堆叠 rGO 的重排。在水凝胶 rGO 纤维中捕获非挥发性溶剂可以保留相互连接的孔,而冷冻干燥会导致不相互连接的孔。随后,不同的干燥石墨烯纤维具有显着不同的比容容量,范围从 5 到 120 F cm-3,并且在电容储能方面具有不同的倍率能力。这些新的基本见解为将二维材料可控组装成用于储能应用及其他领域的纤维架构提供了有用的指导。溶剂的蒸发提供了毛细管力来驱动堆叠 rGO 的重排。在水凝胶 rGO 纤维中捕获非挥发性溶剂可以保留相互连接的孔,而冷冻干燥会导致不相互连接的孔。随后,不同的干燥石墨烯纤维具有显着不同的比容容量,范围从 5 到 120 F cm-3,并且在电容储能方面具有不同的倍率能力。这些新的基本见解为将 2D 材料可控组装成用于储能应用及其他领域的纤维架构提供了有用的指导。溶剂的蒸发提供了毛细管力来驱动堆叠 rGO 的重排。在水凝胶 rGO 纤维中捕获非挥发性溶剂可以保留相互连接的孔,而冷冻干燥会导致不相互连接的孔。随后,不同的干燥石墨烯纤维具有显着不同的比容容量,范围从 5 到 120 F cm-3,并且在电容储能方面具有不同的倍率能力。这些新的基本见解为将二维材料可控组装成用于储能应用及其他领域的纤维架构提供了有用的指导。不同的干燥石墨烯纤维具有从 5 到 120 F cm-3 范围内的显着不同的比体积电容和电容储能中的不同倍率能力。这些新的基本见解为将二维材料可控组装成用于储能应用及其他领域的纤维架构提供了有用的指导。不同的干燥石墨烯纤维具有从 5 到 120 F cm-3 范围内的显着不同的比体积电容和不同的电容储能速率能力。这些新的基本见解为将二维材料可控组装成用于储能应用及其他领域的纤维架构提供了有用的指导。
更新日期:2020-08-01
down
wechat
bug