当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Structural Insight into [NiFe] Hydrogenase Maturation by Transient Complexes between Hyp Proteins.
Accounts of Chemical Research ( IF 20.832 ) Pub Date : 2020-03-31 , DOI: 10.1021/acs.accounts.0c00022
Kunio Miki,Haruyuki Atomi,Satoshi Watanabe

Conspectus[NiFe] hydrogenases catalyze reversible hydrogen production/consumption. The core unit of [NiFe] hydrogenase consists of a large and a small subunit. The active site of the large subunit of [NiFe] hydrogenases contains a NiFe(CN)2CO cluster. The biosynthesis/maturation of these hydrogenases is a complex and dynamic process catalyzed primarily by six Hyp proteins (HypABCDEF), which play central roles in the maturation process. HypA and HypB are involved in the Ni insertion, whereas HypC, D, E, and F are required for the biosynthesis, assembly, and insertion of the Fe(CN)2CO group. HypE and HypF catalyze the synthesis of the CN group through the carbamoylation and cyanation of the C-terminus cysteine of HypE. HypC and HypD form a scaffold for the assembly of the Fe(CN)2CO moiety.Over the last decades, a large number of biochemical studies on maturation proteins have been performed, revealing basic functions of each Hyp protein and the overall framework of the maturation pathway. However, it is only in the last 10 years that structural insight has been gained, and our group has made significant contributions to the structural biology of hydrogenase maturation proteins.Since our first publication, where crystal structures of three Hyp proteins have been determined, we have performed a series of structural studies of all six Hyp proteins from a hyperthermophilic archaeon Thermococcus kodakarensis, providing molecular details of each Hyp protein. We have also determined the crystal structures of transient complexes between Hyp proteins that are formed during the maturation process to sequentially incorporate the components of the NiFe(CN)2CO cluster to immature large subunits of [NiFe] hydrogenases. Such complexes, whose crystal structures are determined, include HypA-HypB, HypA-HyhL (hydrogenase large subunit), HypC-HypD, and HypC-HypD-HypE. The structures of the HypC-HypD, and HypCDE complexes reveal a sophisticated process of transient formation of the HypCDE complex, providing insight into the molecular basis of Fe atom cyanation. The high-resolution structures of the carbamoylated and cyanated forms of HypE reveal a structural basis for the biological conversion of primary amide to nitrile. The structure of the HypA-HypB complex elucidates nucleotide-dependent transient complex formation between these two proteins and the molecular basis of acquisition and release of labile Ni. Furthermore, our recent structure analysis of a complex between HypA and immature HyhL reveals that spatial rearrangement of both the N- and C-terminal tails of HyhL will occur upon the [NiFe] cluster insertion, which function as a key checkpoint for the maturation completion. This Account will focus on recent advances in structural studies of the Hyp proteins and on mechanistic insights into the [NiFe] hydrogenase maturation.
更新日期:2020-04-23

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
陈芬儿
厦门大学
何振宇
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug