当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low-Coordinate Step Atoms via Plasma-Assisted Calcinations to Enhance Electrochemical Reduction of Nitrogen to Ammonia.
Small ( IF 13.3 ) Pub Date : 2020-03-29 , DOI: 10.1002/smll.202000421
Xiaohui Yang 1, 2 , Faling Ling 3, 4 , Xiangrong Zi 1 , Yanwei Wang 1 , Han Zhang 1 , Huijuan Zhang 1 , Miao Zhou 4 , Zaiping Guo 2 , Yu Wang 1, 5
Affiliation  

The electrochemical N2 reduction reaction (NRR) is emerging as a promising alternative to the industrial Haber-Bosch process for distributed and modular production of NH3 . Nevertheless, developing high-efficiency catalysts to simultaneously realize both high activity and selectivity for the development of a sustainable NRR is very critical but extremely challenging. Here, a unique plasma-assisted strategy is developed to synthesize iridium diphosphide nanocrystals with abundant surface step atoms anchored in P,N-codoped porous carbon nanofilms (IrP2 @PNPC-NF), where the edges of the IrP2 nanocrystals are extremely irregular, and the ultrathin PNPC-NF possesses a honeycomb-like macroporous structure. These characteristics ensure that IrP2 @PNPC-NF delivers superior NRR performance with an NH3 yield rate of 94.0 µg h-1 mg-1 cat. and a faradaic efficiency (FE) of 17.8%. Density functional theory calculations reveal that the unique NRR performance originates from the low-coordinate step atoms on the edges of IrP2 nanocrystals, which can lower the reaction barrier to improve the NRR activity and simultaneously inhibit hydrogen evolution to achieve a high FE for NH3 formation. More importantly, such a plasma-assisted strategy is general and can be extended to the synthesis of other high-melting-point noble-metal phosphides (OsP2 @PNPC-NF, Re3 P4 @PNPC-NF, etc.) with abundant step atoms at lower temperatures.

中文翻译:

通过等离子体辅助煅烧的低配位阶跃原子,可增强氮到氨的电化学还原。

电化学N2还原反应(NRR)逐渐成为工业Haber-Bosch工艺的有希望的替代方法,用于分布式和模块化生产NH3。然而,开发高效催化剂以同时实现高活性和选择性以开发可持续的NRR是非常关键但极具挑战性的。在这里,开发了一种独特的等离子体辅助策略,以合成具有大量表面台阶原子的二磷化铱纳米晶体,该二阶铱原子锚定在P,N掺杂的多孔碳纳米膜(IrP2 @ PNPC-NF)中,其中IrP2纳米晶体的边缘极为不规则,超薄PNPC-NF具有蜂窝状的大孔结构。这些特性确保IrP2 @ PNPC-NF具有94.0 µg h-1 mg-1 cat的NH3收率,可提供出色的NRR性能。法拉第效率(FE)为17.8%。密度泛函理论计算表明,独特的NRR性能源自IrP2纳米晶体边缘的低配位阶跃原子,它可以降低反应势垒以提高NRR活性,同时抑制氢的释放,从而获得高的FE形成NH3。更重要的是,这种等离子辅助策略是通用的,可以扩展到合成其他具有高阶原子的高熔点贵金属磷化物(OsP2 @ PNPC-NF,Re3 P4 @ PNPC-NF等)。在较低的温度下。可以降低反应势垒以提高NRR活性,同时抑制氢的释放,从而获得较高的FE生成NH3。更重要的是,这种等离子辅助策略是通用的,可以扩展到合成其他具有高阶原子的高熔点贵金属磷化物(OsP2 @ PNPC-NF,Re3 P4 @ PNPC-NF等)。在较低的温度下。可以降低反应势垒以提高NRR活性,同时抑制氢的释放,从而获得较高的FE生成NH3。更重要的是,这种等离子辅助策略是通用的,可以扩展到合成其他具有高阶原子的高熔点贵金属磷化物(OsP2 @ PNPC-NF,Re3 P4 @ PNPC-NF等)。在较低的温度下。
更新日期:2020-04-22
down
wechat
bug