当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Defect-implantation for the all-electrical detection of non-collinear spin-textures
Nature Communications ( IF 16.6 ) Pub Date : 2020-03-30 , DOI: 10.1038/s41467-020-15379-6
Imara Lima Fernandes , Mohammed Bouhassoune , Samir Lounis

The viability of past, current and future devices for information technology hinges on their sensitivity to the presence of impurities. The latter can reshape extrinsic Hall effects or the efficiency of magnetoresistance effects, essential for spintronics, and lead to resistivity anomalies, the so-called Kondo effect. Here, we demonstrate that atomic defects enable highly efficient all-electrical detection of spin-swirling textures, in particular magnetic skyrmions, which are promising bit candidates in future spintronics devices. The concomitant impurity-driven alteration of the electronic structure and magnetic non-collinearity gives rise to a new spin-mixing magnetoresistance (XMRdefect). Taking advantage of the impurities-induced amplification of the bare transport signal, which depends on their chemical nature, a defect-enhanced XMR (DXMR) is proposed. Both XMR modes are systematised for 3d and 4d transition metal defects implanted at the vicinity of skyrmions generated in PdFe bilayer deposited on Ir(111). The ineluctability of impurities in devices promotes the implementation of defect-enabled XMR modes in reading architectures with immediate implications in magnetic storage technologies.



中文翻译:

缺陷植入用于非共线自旋纹理的全电检测

信息技术过去,现在和将来的设备的生存能力取决于它们对杂质存在的敏感性。后者可以重塑自旋电子学必不可少的外在霍尔效应或磁阻效应的效率,并导致电阻率异常,即所谓的近藤效应。在这里,我们证明了原子缺陷能够实现高效的全电检测自旋旋涡纹理,尤其是磁性天rm,这在未来的自旋电子学设备中有望成为比特候选者。电子结构的伴随杂质驱动的变化和磁性非共线性产生了新的自旋混合磁阻(XMR缺陷)。利用杂质诱导的裸传输信号的放大(取决于其化学性质),提出了一种缺陷增强型XMR(DXMR)。两种XMR模式都针对植入在Ir(111)上的PdFe双层中产生的天体离子附近注入的3d4d过渡金属缺陷进行了系统化。设备中杂质的不可避免性促进了在读取架构中实现具有缺陷的XMR模式的实现,从而对磁存储技术产生了直接影响。

更新日期:2020-04-24
down
wechat
bug