当前位置: X-MOL 学术Comput. Phys. Commun. › 论文详情
a-TDEP: Temperature Dependent Effective Potential for Abinit – Lattice dynamic properties including anharmonicity
Computer Physics Communications ( IF 3.309 ) Pub Date : 2020-03-30 , DOI: 10.1016/j.cpc.2020.107301
François Bottin; Jordan Bieder; Johann Bouchet

In this paper, we present the a-TDEP post-process code implemented in the Abinit package. This one is able to capture the explicit thermal effects in solid state physics and to produce a large number of temperature dependent thermodynamic quantities, including the so-called anharmonic effects. Its use is straightforward and require only a single ab initio molecular dynamic (AIMD) trajectory. A Graphical User Interface (GUI) is also available, making the use even easier. We detail our home made implementation of the original “Temperature Dependent Effective Potential” method proposed by Hellman et al. (2011). In particular, we present the various algorithms and schemes used in a-TDEP which enable to obtain the effective Interatomic Force Constants (IFC). The 2nd and 3rd order effective IFC are produced self-consistently using a least-square method, fitting the AIMD forces on a model Hamiltonian function of the displacements. In addition, we stress that we face to a constrained least-square problem since all the effective IFC have to fulfill the several symmetry rules imposed by the space group, by the translation or rotation invariances of the system and by others. Numerous thermodynamic quantities can be computed starting from the 2nd order effective IFC. The first one is the phonon spectrum, from which a large number of other quantities flow : internal energy, entropy, free energy, specific heat... The elastic constants and other usual elastic moduli (the bulk, shear and Young moduli) can also be produced at this level. Using the 3rd order effective IFC, we show how to extract the thermodynamic Grüneisen parameter, the thermal expansion, the sound velocities... and in particular, how to take into account the anisotropy of the system within. As representative applications of a-TDEP capabilities, we show the thermal evolution of the soft phonon mode of α-U, the thermal stabilization of the bcc phase of Zr and the thermal expansion of diamond Si. All these features highlight the strong anharmonicity included in these systems.
更新日期:2020-03-30

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
中洪博元
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug