当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Aco Resampling: Enhancing the performance of oversampling methods for class imbalance classification
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-03-30 , DOI: 10.1016/j.knosys.2020.105818
Min Li; An Xiong; Lei Wang; Shaobo Deng; Jun Ye

Many sampling-based preprocessing methods have been proposed to solve the problem of unbalanced dataset classification. The fundamental principle of these methods is rebalancing an unbalanced dataset by a concrete strategy. Herein, we introduce a novel hybrid proposal named ant colony optimization resampling (ACOR) to overcome class imbalance classification. ACOR primarily includes two steps: first, it rebalances an imbalanced dataset by a specific oversampling algorithm; next, it finds an (sub)optimal subset from the balanced dataset by ant colony optimization. Unlike other oversampling techniques, ACOR does not focus on the mechanics of generating new samples. The main advantage of ACOR is that existing oversampling algorithms can be fully utilized and an ideal training set can be obtained by ant colony optimization. Therefore, ACOR can enhance the performance of existing oversampling algorithms. Experimental results on 18 real imbalanced datasets prove that ACOR yields significantly better results compared with four popular oversampling methods in terms of various assessment metrics, such as AUC, G-mean, and BACC.
更新日期:2020-03-30

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug