当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
An online Bayesian approach to change-point detection for categorical data
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-03-29 , DOI: 10.1016/j.knosys.2020.105792
Yiwei Fan; Xiaoling Lu

Change-point detection for categorical data has wide applications in many fields. Existing methods either are distribution-free, not utilizing categorical information sufficiently, or have limited performance when there exists “rare events” (events that occur with low frequency). In this paper, we propose a Bayesian change-point detection model for categorical data based on Dirichlet-multinomial mixtures. Because of the introduction of prior information, our method performs well for the existence of “rare events”. An online parameter estimation procedure and an online detection strategy are then designed to adapt to data streams. Monte Carlo simulations discuss the power of the proposed method and show advantages compared with existing algorithms. Applications in biomedical research, document analysis, health news case study and location monitoring indicate practical values of our method.
更新日期:2020-03-30

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug