当前位置: X-MOL 学术Stem Cell Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hypoxia/Hif1α prevents premature neuronal differentiation of neural stem cells through the activation of Hes1.
Stem Cell Research ( IF 1.2 ) Pub Date : 2020-03-28 , DOI: 10.1016/j.scr.2020.101770
Josef Večeřa 1 , Jiřina Procházková 2 , Veronika Šumberová 3 , Veronika Pánská 3 , Hana Paculová 2 , Martina Kohutková Lánová 3 , Jan Mašek 4 , Dáša Bohačiaková 5 , Emma Rachel Andersson 6 , Jiří Pacherník 3
Affiliation  

Embryonic neural stem cells (NSCs), comprising neuroepithelial and radial glial cells, are indispensable precursors of neurons and glia in the mammalian developing brain. Since the process of neurogenesis occurs in a hypoxic environment, the question arises of how NSCs deal with low oxygen tension and whether it affects their stemness. Genes from the hypoxia-inducible factors (HIF) family are well known factors governing cellular response to hypoxic conditions. In this study, we have discovered that the endogenous stabilization of hypoxia-inducible factor 1α (Hif1α) during neural induction is critical for the normal development of the NSCs pool by preventing its premature depletion and differentiation. The knock-out of the Hif1α gene in mESC-derived neurospheres led to a decrease in self-renewal of NSCs, paralleled by an increase in neuronal differentiation. Similarly, neuroepithelial cells differentiated in hypoxia exhibited accelerated neurogenesis soon after Hif1α knock-down. In both models, the loss of Hif1α was accompanied by an immediate drop in neural repressor Hes1 levels while changes in Notch signaling were not observed. We found that active Hif1α/Arnt1 transcription complex bound to the evolutionarily conserved site in Hes1 gene promoter in both neuroepithelial cells and neural tissue of E8.5 – 9.5 embryos. Taken together, these results emphasize the novel role of Hif1α in the regulation of early NSCs population through the activation of neural repressor Hes1, independently of Notch signaling.



中文翻译:

缺氧/Hif1α通过Hes1的激活阻止神经干细胞的神经元过早分化。

包括神经上皮和放射状神经胶质细胞的胚胎神经干细胞(NSC)是哺乳动物发育中的大脑中神经元和神经胶质必不可少的前体。由于神经发生过程发生在低氧环境中,因此产生了一个问题,即神经干细胞如何处理低氧张力以及它是否影响其干性。来自缺氧诱导因子(HIF)家族的基因是控制细胞对缺氧条件反应的众所周知的因子。在这项研究中,我们发现神经诱导过程中缺氧诱导因子1α(Hif1α)的内源性稳定通过防止NSC的过早耗竭和分化对于NSCs池的正常发育至关重要。Hif1α的敲除mESC衍生的神经球中的SNP基因导致NSC自我更新的减少,同时神经元分化的增加。类似地,在缺氧条件下分化的神经上皮细胞在Hif1α敲低后很快显示出加速的神经发生。在这两个模型中,Hif1α的丧失均伴随着神经阻遏物Hes1水平的立即下降,而未观察到Notch信号的变化。我们发现,活跃的Hif1α/ Arnt1转录复合体与神经上皮细胞和E8.5 – 9.5胚胎的神经组织中Hes1基因启动子中的进化保守位点结合。综上所述,这些结果强调了Hif1α通过激活神经阻遏物Hes1(独立于Notch信号传导)在早期NSC种群调控中的新作用。

更新日期:2020-03-28
down
wechat
bug