当前位置: X-MOL 学术arXiv.cs.CY › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of a Real-time Indoor Location System using Bluetooth Low Energy Technology and Deep Learning to Facilitate Clinical Applications
arXiv - CS - Computers and Society Pub Date : 2019-07-24 , DOI: arxiv-1907.10554
Guanglin Tang, Yulong Yan, Chenyang Shen, Xun Jia, Meyer Zinn, Zipalkumar Trivedi, Alicia Yingling, Kenneth Westover, Steve Jiang

An indoor, real-time location system (RTLS) can benefit both hospitals and patients by improving clinical efficiency through data-driven optimization of procedures. Bluetooth-based RTLS systems are cost-effective but lack accuracy and robustness because Bluetooth signal strength is subject to fluctuation. We developed a machine learning-based solution using a Long Short-Term Memory (LSTM) network followed by a Multilayer Perceptron classifier and a posterior constraint algorithm to improve RTLS performance. Training and validation datasets showed that most machine learning models perform well in classifying individual location zones, although LSTM was most reliable. However, when faced with data indicating cross-zone trajectories, all models showed erratic zone switching. Thus, we implemented a history-based posterior constraint algorithm to reduce the variability in exchange for a slight decrease in responsiveness. This network increases robustness at the expense of latency. When latency is less of a concern, we computed the latency-corrected accuracy which is 100% for our testing data, significantly improved from LSTM without constraint which is 96.2%. The balance between robustness and responsiveness can be considered and adjusted on a case-by-case basis, according to the specific needs of downstream clinical applications. This system was deployed and validated in an academic medical center. Industry best practices enabled system scaling without substantial compromises to performance or cost.

中文翻译:

使用蓝牙低功耗技术和深度学习开发实时室内定位系统以促进临床应用

室内实时定位系统 (RTLS) 可以通过数据驱动的程序优化提高临床效率,从而使医院和患者都受益。基于蓝牙的 RTLS 系统具有成本效益,但缺乏准确性和鲁棒性,因为蓝牙信号强度易受波动影响。我们开发了一种基于机器学习的解决方案,使用长短期记忆 (LSTM) 网络,然后是多层感知器分类器和后验约束算法,以提高 RTLS 性能。训练和验证数据集表明,尽管 LSTM 最可靠,但大多数机器学习模型在对单个位置区域进行分类方面表现良好。然而,当面对表明跨区域轨迹的数据时,所有模型都显示出不稳定的区域切换。因此,我们实施了基于历史的后验约束算法来减少可变性,以换取响应能力的轻微下降。该网络以延迟为代价提高了鲁棒性。当延迟不那么重要时,我们计算了测试数据的延迟校正准确度为 100%,与 LSTM 无约束的 96.2% 相比有了显着提高。根据下游临床应用的具体需求,可以根据具体情况考虑和调整稳健性和响应性之间的平衡。该系统已在学术医疗中心部署和验证。行业最佳实践支持系统扩展,而不会对性能或成本产生重大影响。该网络以延迟为代价提高了鲁棒性。当延迟不那么重要时,我们计算了测试数据的延迟校正准确度为 100%,与 LSTM 无约束的 96.2% 相比有了显着提高。根据下游临床应用的具体需求,可以根据具体情况考虑和调整稳健性和响应性之间的平衡。该系统已在学术医疗中心部署和验证。行业最佳实践支持系统扩展,而不会对性能或成本产生重大影响。该网络以延迟为代价提高了鲁棒性。当延迟不那么重要时,我们计算了测试数据的延迟校正准确度为 100%,与 LSTM 无约束的 96.2% 相比有了显着提高。根据下游临床应用的具体需求,可以根据具体情况考虑和调整稳健性和响应性之间的平衡。该系统已在学术医疗中心部署和验证。行业最佳实践支持系统扩展,而不会对性能或成本产生重大影响。根据下游临床应用的具体需求,可以根据具体情况考虑和调整稳健性和响应性之间的平衡。该系统已在学术医疗中心部署和验证。行业最佳实践支持系统扩展,而不会对性能或成本产生重大影响。根据下游临床应用的具体需求,可以根据具体情况考虑和调整稳健性和响应性之间的平衡。该系统已在学术医疗中心部署和验证。行业最佳实践支持系统扩展,而不会对性能或成本产生重大影响。
更新日期:2020-09-09
down
wechat
bug