当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
On the Complexity and Approximability of Optimal Sensor Selection and Attack for Kalman Filtering
arXiv - CS - Computational Complexity Pub Date : 2020-03-24 , DOI: arxiv-2003.11951
Lintao Ye; Nathaniel Woodford; Sandip Roy; Shreyas Sundaram

Given a linear dynamical system affected by stochastic noise, we consider the problem of selecting an optimal set of sensors (at design-time) to minimize the trace of the steady state a priori or a posteriori error covariance of the Kalman filter, subject to certain selection budget constraints. We show the fundamental result that there is no polynomial-time constant-factor approximation algorithm for this problem. This contrasts with other classes of sensor selection problems studied in the literature, which typically pursue constant-factor approximations by leveraging greedy algorithms and submodularity (or supermodularity) of the cost function. Here, we provide a specific example showing that greedy algorithms can perform arbitrarily poorly for the problem of design-time sensor selection for Kalman filtering. We then study the problem of attacking (i.e., removing) a set of installed sensors, under predefined attack budget constraints, to maximize the trace of the steady state a priori or a posteriori error covariance of the Kalman filter. Again, we show that there is no polynomial-time constant-factor approximation algorithm for this problem, and show specifically that greedy algorithms can perform arbitrarily poorly.
更新日期:2020-03-27

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug