当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biologically Inspired Catheter for Endovascular Sensing and Navigation.
Scientific Reports ( IF 4.6 ) Pub Date : 2020-03-27 , DOI: 10.1038/s41598-020-62360-w
Erin E Sutton 1 , Bernhard Fuerst 2 , Reza Ghotbi 3 , Noah J Cowan 1 , Nassir Navab 2, 4
Affiliation  

Minimally invasive treatment of vascular disease demands dynamic navigation through complex blood vessel pathways and accurate placement of an interventional device, which has resulted in increased reliance on fluoroscopic guidance and commensurate radiation exposure to the patient and staff. Here we introduce a guidance system inspired by electric fish that incorporates measurements from a newly designed electrogenic sensory catheter with preoperative imaging to provide continuous feedback to guide vascular procedures without additional contrast injection, radiation, image registration, or external tracking. Electrodes near the catheter tip simultaneously create a weak electric field and measure the impedance, which changes with the internal geometry of the vessel as the catheter advances through the vasculature. The impedance time series is then mapped to a preoperative vessel model to determine the relative position of the catheter within the vessel tree. We present navigation in a synthetic vessel tree based on our mapping technique. Experiments in a porcine model demonstrated the sensor’s ability to detect cross-sectional area variation in vivo. These initial results demonstrate the capability and potential of this novel bioimpedance-based navigation technology as a non-fluoroscopic technique to augment existing imaging methods.



中文翻译:

生物启发性导管,用于血管内传感和导航。

血管疾病的微创治疗需要通过复杂的血管路径进行动态导航,并准确放置介入设备,这导致对荧光检查的依赖性增加,并且对患者和工作人员的辐射也相应增加。在这里,我们介绍了一种受电鱼启发的引导系统,该系统结合了新设计的电感应导管的测量结果和术前影像,可提供连续反馈以指导血管操作,而无需额外的造影剂注入,放射,图像配准或外部跟踪。导管尖端附近的电极会同时产生一个弱电场并测量阻抗,该阻抗会随着导管内部血管的前进而随血管的内部几何形状而变化。然后将阻抗时间序列映射到术前血管模型,以确定导管在血管树内的相对位置。我们将基于我们的地图绘制技术在合成容器树中显示导航。猪模型中的实验证明了传感器检测横截面积变化的能力体内。这些初步结果证明了这种新颖的基于生物阻抗的导航技术作为增强现有成像方法的非荧光镜技术的能力和潜力。

更新日期:2020-03-27
down
wechat
bug