当前位置: X-MOL 学术ChemPlusChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interface Engineering of MoS2 -Modified Graphitic Carbon Nitride Nano-photocatalysts for an Efficient Hydrogen Evolution Reaction.
ChemPlusChem ( IF 3.4 ) Pub Date : 2020-03-26 , DOI: 10.1002/cplu.202000096
Eirini D Koutsouroubi 1 , Ioannis Vamvasakis 1 , Ioannis T Papadas 2 , Charalampos Drivas 3 , Stelios A Choulis 2 , Stella Kennou 3 , Gerasimos S Armatas 1
Affiliation  

Understanding of photochemical charge transfer processes at nanoscale heterojunctions is essential in developing effective catalysts. Here, we utilize a controllable synthesis method and a combination of optical absorption, photoluminescence, and electrochemical impedance spectroscopic studies to investigate the effect of MoS2 nanosheet lateral dimension and edge length size on the photochemical behavior of MoS2‐modified graphitic carbon nitride (g‐C3N4) heterojunctions. These nano‐heterostructures, which comprise interlayer junctions with variable area (i. e., MoS2 lateral size ranges from 18 nm to 52 nm), provide a size‐tunable interfacial charge transfer through the MoS2/g‐C3N4 contacts, while exposing a large fraction of surface MoS2 edge sites available for the hydrogen evolution reaction. Importantly, modification of g‐C3N4 with MoS2 layers of 39±5 nm lateral size (20 wt % loading) creates interfacial contacts with relatively large number of MoS2 edge sites and efficient electronic transport phenomena, yielding a high photocatalytic H2‐production activity of 1497 μmol h−1 gcat−1 and an apparent QY of 3.3 % at 410 nm light irradiation. This study thus offers a design strategy to improve light energy conversion efficiency of catalysts by engineering interfaces at the nanoscale in 2D‐layered heterojunction materials.

中文翻译:

MoS2改性的石墨化氮化碳纳米光催化剂的界面工程,用于有效的氢气释放反应。

了解纳米级异质结上的光化学电荷转移过程对于开发有效的催化剂至关重要。在这里,我们采用可控的合成方法,并结合了光吸收,光致发光和电化学阻抗谱研究,以研究MoS 2纳米片横向尺寸和边长尺寸对MoS 2改性石墨氮化碳(g -C 3 N 4)异质结。这些纳米异质结构包含具有可变面积的层间结(即MoS 2横向尺寸范围从18 nm到52 nm),可通过MoS 2 / g-C提供尺寸可调的界面电荷转移3 N 4接触,同时暴露出可用于氢释放反应的大部分表面MoS 2边缘部位。重要的是,用39±5 nm横向尺寸(20 wt%负载)的MoS 2层对g‐C 3 N 4进行改性会产生具有相对大量MoS 2边缘位点和有效电子传输现象的界面接触,从而产生高光催化H 2生产活动为1497μmolh -1 g cat -1在410 nm光照射下的表观QY为3.3%。因此,这项研究提供了一种设计策略,可通过在二维层异质结材料中的纳米级工程化界面来提高催化剂的光能转化效率。
更新日期:2020-03-26
down
wechat
bug