当前位置: X-MOL 学术Mol. Biol. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genome wide association mapping and candidate gene analysis for pod shatter resistance in Brassica juncea and its progenitor species.
Molecular Biology Reports ( IF 2.8 ) Pub Date : 2020-03-26 , DOI: 10.1007/s11033-020-05384-9
Jasmeet Kaur 1 , Javed Akhatar 1 , Anna Goyal 1 , Navneet Kaur 1 , Snehdeep Kaur 1 , Meenakshi Mittal 1 , Nitin Kumar 1 , Heena Sharma 1 , Shashi Banga 1 , S S Banga 1
Affiliation  

We investigated phenotypic variations for pod shattering, pod length and number of seeds per pod in large germplasm collections of Brassica juncea (2n = 36; AABB) and its progenitor species, B. rapa (2n = 20; AA) and B. nigra (2n = 16; BB). Pod shatter resistance was measured as energy required for rupturing a mature dry pod, with a specially fabricated pendulum machine. Rupture energy (RE) ranged from 3.3 to 11.0 mJ in B. juncea. MCP 633, NR 3350 and Albeli required maximum energy to shatter a pod. It ranged from 2.5 to 7.8 mJ for B. rapa with an average of 5.5 mJ. B. nigra possessed easy to rupture pods. Correlation analysis showed strong associations among these traits in B. juncea and B. rapa. Genome wide association studies were conducted with select sets of B. juncea and B. rapa germplasm lines. Significant and annotated associations predict the role of FRUITFULL, MANNASE7, and NAC secondary wall thickening promoting factor (NST2) in the genetic regulation of shatter resistance in B. juncea. NST2 and SHP1 appeared important for pod length and seeds per pod in B. rapa. Candidate gene based association mapping also confirmed the role of SHP1 and NST2 in regulating pod shattering and related pod traits in B. rapa and B. juncea. Footprints of selection were detected in SHP1, SHP2 (B. rapa, B. nigra and B. juncea), RPL (B. rapa) and NAC (B. juncea). Our results provide insights into the genetic architecture of three pod traits. The identified genes are relevant to improving and securing crop productivity of mustard crop.

中文翻译:

全基因组关联映射和候选基因分析对芥菜及其祖先种的荚果抗裂性。

我们调查了芸苔属(2n = 36; AABB)及其祖先物种B. rapa(2n = 20; AA)和B. nigra(2n = 36; AABB)的大型种质集合的荚果破碎,荚果长度和每个荚果种子数的表型变异。 2n = 16; BB)。豆荚的抗碎裂性是用专门制造的摆锤机测量的,它是使成熟的干豆荚破裂所需的能量。芥菜中的破裂能量(RE)为3.3至11.0 mJ。MCP 633,NR 3350和Albeli需要最大的能量才能破碎豆荚。对于B. rapa,它的范围从2.5到7.8 mJ,平均为5.5 mJ。B. nigra具有容易破裂的豆荚。相关分析表明,芥菜型油菜和芥菜型油菜的这些性状之间具有很强的相关性。基因组范围内的关联性研究是用精选的芥菜种和芥菜种质系进行的。显着且带注释的关联预测了FRUITFULL,MANNASE7和NAC次生壁增厚促进因子(NST2)在芥菜芽孢杆菌抗碎性的遗传调控中的作用。NST2和SHP1似乎对B. rapa中的豆荚长度和每个豆荚的种子很重要。基于候选基因的关联图谱也证实了SHP1和NST2在调节B. rapa和B.juncea中的豆荚破碎和相关豆荚性状中的作用。在SHP1,SHP2(B。rapa,B。nigra和B. juncea),RPL(B。rapa)和NAC(B。juncea)中检测到选择的足迹。我们的结果提供了对三种豆荚性状遗传结构的见解。所鉴定的基因与改善和确保芥菜作物的作物生产率有关。和NAC次生壁增厚促进因子(NST2)在芥菜型杆菌抗破碎性的遗传调控中。NST2和SHP1对于B. rapa中的豆荚长度和每个豆荚的种子似乎很重要。基于候选基因的关联图谱也证实了SHP1和NST2在调节B. rapa和B.juncea中的豆荚破碎和相关豆荚性状中的作用。在SHP1,SHP2(B。rapa,B。nigra和B. juncea),RPL(B。rapa)和NAC(B。juncea)中检测到选择的足迹。我们的结果提供了对三种豆荚性状遗传结构的见解。所鉴定的基因与改善和确保芥菜作物的作物生产率有关。和NAC次生壁增厚促进因子(NST2)在芥菜型杆菌抗破碎性的遗传调控中。NST2和SHP1似乎对B. rapa中的豆荚长度和每个豆荚的种子很重要。基于候选基因的关联图谱也证实了SHP1和NST2在调节B. rapa和B.juncea中的豆荚破碎和相关豆荚性状中的作用。在SHP1,SHP2(B。rapa,B。nigra和B. juncea),RPL(B。rapa)和NAC(B。juncea)中检测到选择的足迹。我们的结果提供了对三种豆荚性状遗传结构的见解。所鉴定的基因与改善和确保芥菜作物的作物生产率有关。基于候选基因的关联作图也证实了SHP1和NST2在调节B. rapa和B.juncea中的豆荚破碎和相关豆荚性状中的作用。在SHP1,SHP2(B。rapa,B。nigra和B. juncea),RPL(B。rapa)和NAC(B。juncea)中检测到选择的足迹。我们的结果提供了对三种豆荚性状遗传结构的见解。所鉴定的基因与改善和确保芥菜作物的作物生产率有关。基于候选基因的关联图谱也证实了SHP1和NST2在调节B. rapa和B.juncea中的豆荚破碎和相关豆荚性状中的作用。在SHP1,SHP2(B。rapa,B。nigra和B. juncea),RPL(B。rapa)和NAC(B。juncea)中检测到选择的足迹。我们的结果提供了对三种豆荚性状遗传结构的见解。所鉴定的基因与改善和确保芥菜作物的作物生产率有关。
更新日期:2020-03-27
down
wechat
bug