当前位置: X-MOL 学术J. Membr. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unraveling the effect of charge distribution in a polyelectrolyte multilayer nanofiltration membrane on its ion transport properties
Journal of Membrane Science ( IF 9.5 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.memsci.2020.118045
E. Evdochenko , J. Kamp , R. Femmer , Y. Xu , V.V. Nikonenko , M. Wessling

Abstract Polyelectrolyte (PE) multilayer nanofiltration membranes are composite membranes obtained by layer-by-layer (LbL) adsorption/advection of oppositely charged polyelectrolytes. The mass transport properties of such polyelectrolyte multilayer membranes (PEMMs) strongly depend on membrane structural parameters related to the synthetic preparation conditions as well as on the operating conditions. Understanding the relationship between such structural features and transport properties remains a difficult question to answer. We propose a one-dimensional numerical simulation framework solving the Nernst-Planck-Poisson equations for the transport of ions through n electrolyte layers En and n polyelectrolyte layers PEn - coining this pressure (p) driven transport model as pEnPEn. We utilize different EnPEn-architectures of this model to interpret experimental data of new LbL-membranes. The proposed model framework systematically evaluates the impact of the effect of polycation/polyanion architecture with respect to the rejection of symmetric and asymmetric salts. pEnPEn can be tuned to reveal and explain the influence of the ionic crosslinking, charge compensation, and overcompensation. The model enables to formulate an effective charge distribution for different polyelectrolyte multilayer (PEM) structures. As such, the model framework gives insightful details on ion rejection phenomena, yet it will be a prerequisite and will become even more valuable when combined with neural network modeling based on a hybrid data set combining pEnPEn simulations with experimental input parameter.

中文翻译:

揭示聚电解质多层纳滤膜中电荷分布对其离子传输特性的影响

摘要 聚电解质(PE)多层纳滤膜是通过带相反电荷的聚电解质逐层(LbL)吸附/平流获得的复合膜。这种聚电解质多层膜 (PEMM) 的传质特性很大程度上取决于与合成制备条件以及操作条件相关的膜结构参数。理解这种结构特征和传输特性之间的关系仍然是一个难以回答的问题。我们提出了一个一维数值模拟框架,用于解决离子通过 n 个电解质层 En 和 n 个聚电解质层 PEn 的传输的 Nernst-Planck-Poisson 方程 - 将此压力 (p) 驱动的传输模型创建为 pEnPEn。我们利用该模型的不同 EnPEn 架构来解释新 LbL 膜的实验数据。所提出的模型框架系统地评估了聚阳离子/聚阴离子结构对对称和不对称盐的排斥的影响。可以调整 pEnPEn 以揭示和解释离子交联、电荷补偿和过度补偿的影响。该模型能够为不同的聚电解质多层 (PEM) 结构制定有效的电荷分布。因此,模型框架提供了有关离子排斥现象的深刻细节,但它是一个先决条件,当与基于混合数据集的神经网络建模相结合时,它将变得更加有价值,将 pEnPEn 模拟与实验输入参数相结合。所提出的模型框架系统地评估了聚阳离子/聚阴离子结构对对称和不对称盐的排斥的影响。可以调整 pEnPEn 以揭示和解释离子交联、电荷补偿和过度补偿的影响。该模型能够为不同的聚电解质多层 (PEM) 结构制定有效的电荷分布。因此,模型框架提供了有关离子排斥现象的深刻细节,但它是一个先决条件,当与基于混合数据集的神经网络建模相结合时,它将变得更加有价值,将 pEnPEn 模拟与实验输入参数相结合。所提出的模型框架系统地评估了聚阳离子/聚阴离子结构对对称和不对称盐的排斥的影响。可以调整 pEnPEn 以揭示和解释离子交联、电荷补偿和过度补偿的影响。该模型能够为不同的聚电解质多层 (PEM) 结构制定有效的电荷分布。因此,模型框架提供了有关离子排斥现象的深刻细节,但它是一个先决条件,当与基于混合数据集的神经网络建模相结合时,它将变得更加有价值,将 pEnPEn 模拟与实验输入参数相结合。
更新日期:2020-10-01
down
wechat
bug