当前位置: X-MOL 学术J. Sound Vib. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
General sliding-beam formulation: A non-material description for analysis of sliding structures and axially moving beams
Journal of Sound and Vibration ( IF 4.7 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.jsv.2020.115341
Alexander Humer , Ivo Steinbrecher , Loc Vu-Quoc

Abstract We present a general formulation for problems of sliding structures and axially moving beams that undergo large deformations. The formulation relies on a coordinate transformation that facilitates the analysis of beams characterized by a large sliding motion, for which conventional approaches typically become inefficient. The transformation maps variable domains in the material coordinate, which result, e.g., from the beam's sliding motion relative to its supports and external loads, onto fixed domains with respect to the new stretched coordinate. We do not only consider supports and loads prescribed at variable points and domains, but their current position relative to the material points of the structure may additionally depend on the current state of deformation. Hamilton's principle and the geometrically exact theory for shear-deformable beams serve as basis for the derivation of the equations of motion in the stretched coordinate. We introduce a generalized notion of variation that includes the boundaries of variable domains as unknowns and we discuss the implications on the governing equations. Upon a spatial semi-discretization, symmetric mass and tangent stiffness matrices are obtained from the variational formulation of the equations of motion along with non-linear velocity and stiffness-convection terms. Several numerical examples demonstrate both the range of applications and the advantages of the proposed formulation in problems of sliding structures and axially moving beams.

中文翻译:

一般滑动梁公式:用于分析滑动结构和轴向移动梁的非物质描述

摘要 我们提出了滑动结构和承受大变形的轴向移动梁问题的一般公式。该公式依赖于坐标变换,该变换有助于分析以大滑动为特征的梁,而传统方法通常会变得效率低下。变换将材料坐标中的可变域(例如,由梁相对于其支撑和外部载荷的滑动运动导致)映射到相对于新拉伸坐标的固定域。我们不仅考虑在可变点和域规定的支撑和载荷,而且它们相对于结构材料点的当前位置可能还取决于当前的变形状态。汉密尔顿' 剪切变形梁的原理和几何精确理论作为推导拉伸坐标运动方程的基础。我们引入了一个广义的变异概念,其中包括变量域的边界作为未知数,并讨论了对控制方程的影响。根据空间半离散化,对称质量和切线刚度矩阵是从运动方程的变分公式以及非线性速度和刚度对流项中获得的。几个数值例子证明了所提出的公式在滑动结构和轴向移动梁问题中的应用范围和优势。我们引入了一个广义的变异概念,其中包括变量域的边界作为未知数,并讨论了对控制方程的影响。根据空间半离散化,对称质量和切线刚度矩阵是从运动方程的变分公式以及非线性速度和刚度对流项中获得的。几个数值例子证明了所提出的公式在滑动结构和轴向移动梁问题中的应用范围和优势。我们引入了一个广义的变异概念,其中包括变量域的边界作为未知数,并讨论了对控制方程的影响。根据空间半离散化,对称质量和切线刚度矩阵是从运动方程的变分公式以及非线性速度和刚度对流项中获得的。几个数值例子证明了所提出的公式在滑动结构和轴向移动梁问题中的应用范围和优势。对称质量和切线刚度矩阵是从运动方程的变分公式以及非线性速度和刚度对流项中获得的。几个数值例子证明了所提出的公式在滑动结构和轴向移动梁问题中的应用范围和优势。对称质量和切线刚度矩阵是从运动方程的变分公式以及非线性速度和刚度对流项中获得的。几个数值例子证明了所提出的公式在滑动结构和轴向移动梁问题中的应用范围和优势。
更新日期:2020-08-01
down
wechat
bug