当前位置: X-MOL 学术Mar. Chem. › 论文详情
Total alkalinity minus dissolved inorganic carbon as a proxy for deciphering ocean acidification mechanisms
Marine Chemistry ( IF 2.933 ) Pub Date : 2020-03-26 , DOI: 10.1016/j.marchem.2020.103791
Liang Xue; Wei-Jun Cai

Ocean acidification (OA) defined as the decline of ocean pH and calcium carbonate saturation state (Ω) as a result of ocean uptake of CO2 from the atmosphere may have considerable negative impacts on global marine organisms and may substantially modify ocean biogeochemistry. However, as changes of pH and Ω are not conservative or linear with respect to ocean physical processes (e.g., mixing, temperature and pressure changes), the influences of anthropogenic CO2 uptake and ocean biogeochemical processes on OA rates cannot be easily identified. Here, we examine whether a composite property [TA–DIC] or the difference between total alkalinity (TA) and dissolved inorganic carbon (DIC), which is conservative to ocean mixing and is not sensitive to temperature and pressure changes, can be used for measuring OA rates and deciphering the underlying OA mechanisms in the global ocean as it in surface waters of several regional oceans. Based on Global Ocean Data Analysis Project Version 2 (GLODAPv2), we demonstrate using this property for measuring OA rates can be applied on a global ocean scale, except at low salinity e.g., <20 and when [TA–DIC] is <~50 μmol kg−1, where the relationships of [TA–DIC] with pH and/or Ω are nonlinear. However, there are almost no limitations when using this property for deciphering the underlying OA mechanisms since the change of [TA–DIC] with time is relatively small on OA timescales of decades or more. Using [TA–DIC], we can readily quantify the influences from freshwater inputs and upwelling on OA rates based on a two end-member mixing model. More importantly, through the Redfield ratio and apparent oxygen utilization, we can directly link biological influences to OA rates and conveniently quantify the biological modulation on OA rates. Therefore, we argue that using [TA–DIC] as a proxy for OA would provide a simple but powerful way of deciphering acidification mechanisms and predicting future development of acidification.

更新日期:2020-03-27

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
上海纽约大学
张健
陈芬儿
厦门大学
李祥
吉林大学
卓春祥
张昊
杨中悦
试剂库存
天合科研
down
wechat
bug