当前位置: X-MOL 学术Curr. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Layer-Specific Contributions to Imagined and Executed Hand Movements in Human Primary Motor Cortex.
Current Biology ( IF 9.2 ) Pub Date : 2020-03-26 , DOI: 10.1016/j.cub.2020.02.046
Andrew S Persichetti 1 , Jason A Avery 1 , Laurentius Huber 2 , Elisha P Merriam 1 , Alex Martin 1
Affiliation  

The human ability to imagine motor actions without executing them (i.e., motor imagery) is crucial to a number of cognitive functions, including motor planning and learning, and has been shown to improve response times and accuracy of subsequent motor actions [1, 2]. Although these behavioral findings suggest the possibility that imagined movements directly influence primary motor cortex (M1), how this might occur remains unknown [3]. Here, we use a non-blood-oxygen-level-dependent (BOLD) method for collecting fMRI data, called vascular space occupancy (VASO) [4, 5], to measure neural activations across cortical laminae in M1 while participants either tapped their thumb and forefinger together or simply imagined doing so. We report that, whereas executed movements (i.e., finger tapping) evoked neural responses in both the superficial layers of M1 that receive cortical input and the deep layers of M1 that send output to the spinal cord to support movement, imagined movements evoked responses in superficial cortical layers only. Furthermore, we found that finger tapping preceded by both imagined and executed movements showed a reduced response in the superficial layers (repetition suppression) coupled with a heightened response in the deep layers (repetition enhancement). Taken together, our results provide evidence for a mechanism whereby imagined movements can directly affect motor performance and might explain how neural repetition effects lead to improvements in behavior (e.g., repetition priming).

中文翻译:

对人类初级运动皮层中想象和执行的手部运动的特定层贡献。

人类在不执行运动动作的情况下想象运动动作的能力(即运动意象)对许多认知功能至关重要,包括运动规划和学习,并且已被证明可以提高后续运动动作的响应时间和准确性 [1, 2] . 尽管这些行为发现表明想象运动可能直接影响初级运动皮层 (M1),但这种情况如何发生仍然未知[3]。在这里,我们使用一种非血氧水平依赖 (BOLD) 方法来收集 fMRI 数据,称为血管空间占用 (VASO) [4, 5],以测量 M1 中跨皮质层的神经激活,而参与者要么轻敲他们的拇指和食指放在一起或只是想象这样做。我们报告说,虽然执行的动作(即,手指敲击)在接收皮层输入的 M1 表层和将输出发送到脊髓以支持运动的 M1 深层都引起神经反应,想象的运动仅在表层皮层层引起反应。此外,我们发现在想象和执行动作之前的手指敲击表现出浅层反应减弱(重复抑制),而深层反应增强(重复增强)。总之,我们的结果为一种机制提供了证据,即想象的运动可以直接影响运动表现,并可能解释神经重复效应如何导致行为改善(例如,重复启动)。想象的运动只在浅层皮质层引起反应。此外,我们发现在想象和执行动作之前的手指敲击表现出浅层反应减弱(重复抑制),而深层反应增强(重复增强)。总之,我们的结果为一种机制提供了证据,即想象的运动可以直接影响运动表现,并可能解释神经重复效应如何导致行为改善(例如,重复启动)。想象的运动只在浅层皮质层引起反应。此外,我们发现在想象和执行动作之前的手指敲击表现出浅层反应减弱(重复抑制),而深层反应增强(重复增强)。总之,我们的结果为一种机制提供了证据,即想象的运动可以直接影响运动表现,并可能解释神经重复效应如何导致行为改善(例如,重复启动)。我们发现,在想象和执行动作之前的手指敲击表现出浅层反应减弱(重复抑制),而深层反应增强(重复增强)。总之,我们的结果为一种机制提供了证据,即想象的运动可以直接影响运动表现,并可能解释神经重复效应如何导致行为改善(例如,重复启动)。我们发现,在想象和执行动作之前的手指敲击表现出浅层反应减弱(重复抑制),而深层反应增强(重复增强)。总之,我们的结果为一种机制提供了证据,即想象的运动可以直接影响运动表现,并可能解释神经重复效应如何导致行为改善(例如,重复启动)。
更新日期:2020-03-26
down
wechat
bug