当前位置: X-MOL 学术arXiv.cs.CE › 论文详情
A machine learning accelerated FE$^2$ homogenization algorithm for elastic solids
arXiv - CS - Computational Engineering, Finance, and Science Pub Date : 2020-03-21 , DOI: arxiv-2003.11372
Saumik Dana; Mary F Wheeler

The FE$^2$ homogenization algorithm for multiscale modeling iterates between the macroscale and the microscale (represented by a representative volume element) till convergence is achieved at every increment of macroscale loading. The information exchange between the two scales occurs at the gauss points of the macroscale finite element discretization. The microscale problem is also solved using finite elements on-the-fly thus rendering the algorithm computationally expensive for complex microstructures. We invoke machine learning to establish the input-output causality of the RVE boundary value problem using a neural network framework. This renders the RVE as a blackbox which gets the information from the macroscale as an input and gives information back to the macroscale as output, thereby eliminating the need for on-the-fly finite element solves at the RVE level. This framework has the potential to significantly accelerate the FE$^2$ algorithm.
更新日期:2020-03-26

 

全部期刊列表>>
聚焦肿瘤,探索癌症
欢迎探索2019年最具下载量的材料科学论文
论文语言润色服务
宅家赢大奖
如何将化学应用到可持续发展目标中
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
舒伟
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug