当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Fair packing of independent sets
arXiv - CS - Computational Complexity Pub Date : 2020-03-25 , DOI: arxiv-2003.11313
Nina Chiarelli; Matjaž Krnc; Martin Milanič; Ulrich Pferschy; Nevena Pivač; Joachim Schauer

In this work we add a graph theoretical perspective to a classical problem of fairly allocating indivisible items to several agents. Agents have different profit valuations of items and we allow an incompatibility relation between pairs of items described in terms of a conflict graph. Hence, every feasible allocation of items to the agents corresponds to a partial coloring, that is, a collection of pairwise disjoint independent sets. The sum of profits of vertices/items assigned to one color/agent should be optimized in a maxi-min sense. We derive complexity and algorithmic results for this problem, which is a generalization of the classical Partition and Independent Set problems. In particular, we show that the problem is strongly NP-complete in the classes of bipartite graphs and their line graphs, and solvable in pseudo-polynomial time in the classes of cocomparability graphs and biconvex bipartite graphs.
更新日期:2020-03-26

 

全部期刊列表>>
聚焦肿瘤,探索癌症
欢迎探索2019年最具下载量的材料科学论文
论文语言润色服务
宅家赢大奖
如何将化学应用到可持续发展目标中
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
舒伟
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug