当前位置: X-MOL 学术Chem. Eur. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting Visible-Light Photocatalytic Redox Reaction by Charge Separation in SnO2 /ZnSe(N2 H4 )0.5 Heterojunction Nanocatalysts.
Chemistry - A European Journal ( IF 4.3 ) Pub Date : 2020-03-24 , DOI: 10.1002/chem.202000468
Yeonho Kim 1, 2 , Dong-Won Jeong 3 , Jaewon Lee 1, 3 , Min Young Song 1 , Sang Moon Lee 1 , Jihoon Choi 4 , Du-Jeon Jang 3 , Hae Jin Kim 1
Affiliation  

In this work, environmentally friendly photocatalysts with attractive catalytic properties are reported that have been prepared by introducing SnO2 quantum dots (QDs) directly onto ZnSe(N2H4)0.5 substrates to induce advantageous charge separation. The SnO2/ZnSe(N2H4)0.5 nanocomposites could be easily synthesized through a one‐pot hydrothermal process. Owing to the absence of capping ligands, the attached SnO2 QDs displayed superior photocatalytic properties, generating many exposed reactive surfaces. Moreover, the addition of a specified amount of SnO2 boosted the visible‐light photocatalytic activity; however, the presence of excess SnO2 QDs in the substrate resulted in aggregation and deteriorated the performance. The spectroscopic data revealed that the SnO2 QDs act as a photocatalytic mediator and enhance the charge separation within the type II band alignment system of the SnO2/ZnSe(N2H4)0.5 heterojunction photocatalysts. The separated charges in the heterojunction nanocomposites promote radical generation and react with pollutants, resulting in enhanced photocatalytic performance.

中文翻译:

通过 SnO2 /ZnSe(N2 H4 )0.5 异质结纳米催化剂中的电荷分离促进可见光光催化氧化还原反应。

在这项工作中,报道了通过将SnO 2量子点(QD)直接引入到ZnSe(N 2 H 4 ) 0.5基底上以诱导有利的电荷分离来制备具有有吸引力的催化性能的环境友好型光催化剂。SnO 2 /ZnSe(N 2 H 4 ) 0.5纳米复合材料可以通过一锅水热法轻松合成。由于不存在封端配体,附着的 SnO 2 QD 显示出优异的光催化性能,产生许多暴露的反应表面。此外,添加一定量的SnO 2提高了可见光光催化活性。然而,基底中过量SnO 2 QD的存在会导致聚集并降低性能。光谱数据表明,SnO 2 QD 作为光催化介体,增强了 SnO 2 /ZnSe(N 2 H 4 ) 0.5异质结光催化剂的 II 型能带排列系统内的电荷分离。异质结纳米复合材料中分离的电荷促进自由基产生并与污染物发生反应,从而增强光催化性能。
更新日期:2020-03-24
down
wechat
bug