当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance
Science Robotics ( IF 25.0 ) Pub Date : 2020-03-25 , DOI: 10.1126/scirobotics.aay9108
Kirby A. Witte 1 , Pieter Fiers 1, 2 , Alison L. Sheets-Singer 3 , Steven H. Collins 1, 4
Affiliation  

Optimized assistance from powered ankle exoskeletons reduces energy cost during running, whereas spring-like assistance is ineffective. Exoskeletons that reduce energetic cost could make recreational running more enjoyable and improve running performance. Although there are many ways to assist runners, the best approaches remain unclear. In our study, we used a tethered ankle exoskeleton emulator to optimize both powered and spring-like exoskeleton characteristics while participants ran on a treadmill. We expected powered conditions to provide large improvements in energy economy and for spring-like patterns to provide smaller benefits achievable with simpler devices. We used human-in-the-loop optimization to attempt to identify the best exoskeleton characteristics for each device type and individual user, allowing for a well-controlled comparison. We found that optimized powered assistance improved energy economy by 24.7 ± 6.9% compared with zero torque and 14.6 ± 7.7% compared with running in normal shoes. Optimized powered torque patterns for individuals varied substantially, but all resulted in relatively high mechanical work input (0.36 ± 0.09 joule kilogram−1 per step) and late timing of peak torque (75.7 ± 5.0% stance). Unexpectedly, spring-like assistance was ineffective, improving energy economy by only 2.1 ± 2.4% compared with zero torque and increasing metabolic rate by 11.1 ± 2.8% compared with control shoes. The energy savings we observed imply that running velocity could be increased by as much as 10% with no added effort for the user and could influence the design of future products.

中文翻译:

动力和无动力脚踝外骨骼辅助系统改善人类跑步的能源经济性

动力踝关节外骨骼提供的优化辅助功能可降低跑步过程中的能源成本,而类似弹簧的辅助功能则无效。减少能量消耗的外骨骼可以使休闲跑步更加愉快并改善跑步性能。尽管有很多方法可以帮助跑步者,但最佳方法仍不清楚。在我们的研究中,当参与者在跑步机上跑步时,我们使用系留的踝关节外骨骼模拟器来优化动力和类似弹簧的外骨骼特征。我们期望动力条件将大大改善能源经济性,而弹簧状模式将提供更简单的设备可实现的较小收益。我们使用了在环优化技术,试图为每种设备类型和单个用户确定最佳的外骨骼特性,从而进行比较可控的比较。我们发现,与零扭矩相比,优化的电动助力设备的能源经济性提高了24.7±6.9%,与普通鞋相比,提高了14.6±7.7%。针对个人的最佳动力扭矩模式变化很大,但是所有这些都导致相对较高的机械功输入(每步0.36±0.09焦耳千克-1)和峰值扭矩的较晚计时(姿态为75.7±5.0%)。出乎意料的是,像弹簧一样的辅助方法无效,与零扭矩相比,能源效率仅提高2.1±2.4%,与控制鞋相比,代谢率提高了11.1±2.8%。我们观察到的节能意味着,运行速度可以提高10%,而无需用户付出额外的努力,并且可能会影响未来产品的设计。零扭矩时为9%,而普通鞋则为14.6±7.7%。针对个人的最佳动力扭矩模式变化很大,但是所有这些都导致相对较高的机械功输入(每步0.36±0.09焦耳千克-1)和峰值扭矩的较晚计时(姿态为75.7±5.0%)。出乎意料的是,像弹簧一样的辅助方法无效,与零扭矩相比,能源效率仅提高2.1±2.4%,与控制鞋相比,代谢率提高了11.1±2.8%。我们观察到的节能意味着,运行速度可以提高10%,而无需用户付出额外的努力,并且可能会影响未来产品的设计。零扭矩时为9%,而普通鞋则为14.6±7.7%。针对个人的最佳动力扭矩模式变化很大,但是所有这些都导致相对较高的机械功输入(每步0.36±0.09焦耳千克-1)和峰值扭矩的较晚计时(姿态为75.7±5.0%)。出乎意料的是,像弹簧一样的辅助方法无效,与零扭矩相比,能源效率仅提高2.1±2.4%,与控制鞋相比,代谢率提高了11.1±2.8%。我们观察到的节能意味着,运行速度可以提高10%,而无需用户付出额外的努力,并且可能会影响未来产品的设计。但是所有这些都导致相对较高的机械功输入(每步0.36±0.09焦耳千克-1)和峰值扭矩的较晚计时(75.7±5.0%姿态)。出乎意料的是,像弹簧一样的辅助方法无效,与零扭矩相比,能源效率仅提高2.1±2.4%,与控制鞋相比,代谢率提高了11.1±2.8%。我们观察到的节能效果意味着运行速度可以提高10%,而无需用户付出额外的努力,并且可能会影响未来产品的设计。但是所有这些都导致相对较高的机械功输入(每步0.36±0.09焦耳千克-1)和峰值扭矩的较晚计时(75.7±5.0%姿态)。出乎意料的是,像弹簧一样的辅助方法无效,与零扭矩相比,能源效率仅提高2.1±2.4%,与控制鞋相比,代谢率提高了11.1±2.8%。我们观察到的节能意味着,运行速度可以提高10%,而无需用户付出额外的努力,并且可能会影响未来产品的设计。
更新日期:2020-03-25
down
wechat
bug