当前位置: X-MOL 学术Sci. Total Environ. › 论文详情
Mutual effects of selenium and chromium on their removal by Chlorella vulgaris and associated toxicity
Science of the Total Environment ( IF 5.589 ) Pub Date : 2020-03-25 , DOI: 10.1016/j.scitotenv.2020.138219
Huanhuan Zou; Jung-Chen Huang; Chuanqi Zhou; Shengbing He; Weili Zhou

The release of selenium (Se) and chromium (Cr) into the environment from anthropogenic activities has posed a hazard to aquatic ecosystems. In this study, we used Chlorella vulgaris for Se/Cr bioremediation and evaluated their mutual effects on the removal efficiency. Our results found C. vulgaris highly effective in removing selenite-Se(IV) (49.5 ± 1.9%), selenate-Se(VI) (93.0 ± 0.5%), chromic nitrate-Cr(III) (89.0 ± 3.2%) and dichromate-Cr(VI) (88.1 ± 1.3%) over a 72 h period. Cr(VI) significantly impeded Se removal, particularly for selenate, due to competition between both for algal uptake, whereas Cr(III) obviously enhanced Se removal, increasing Se volatilization by ~29%. Similarly, Se significantly increase Cr removal rates, with a maximum of 94.6 ± 0.2% for the algal co-exposed to Se(IV) and Cr(III). To reduce residual pollutants in the alga, we applied combustion as a post-treatment to burn off >99% of the biomass Se for all Se treatments, whereas most of the biomass Cr (54.7–81.6%) remained in the ash at significantly higher levels (~7430 μg Cr/g DW). For toxicity, our speciation analysis found organo-Se (SeCys and SeMet) dominant in the alga exposed to Se, particularly selenite. No Cr(VI) but Cr(III) forms were detected in all Cr-exposed alga. Elemental Se disappeared from all Se-exposed alga in the presence of Cr(VI), while Se resulted in the emergence of Cr-acetate in all Cr(III)-treated alga. After combustion, mineral Se, particularly elemental Se dominated most of the ash; likewise, elemental Cr, along with Cr2O3, was found in all the ash. Overall, our research would contribute to developing a low ecotoxic algal treatment system for Se/Cr contaminated water.
更新日期:2020-03-26

 

全部期刊列表>>
聚焦肿瘤,探索癌症
欢迎探索2019年最具下载量的材料科学论文
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
舒伟
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug