当前位置: X-MOL 学术Chemosphere › 论文详情
Implications of bromate depression from H2O2 addition during ozonation of different bromide-bearing source waters
Chemosphere ( IF 5.108 ) Pub Date : 2020-03-25 , DOI: 10.1016/j.chemosphere.2020.126596
Jianwei Yu; Yongjing Wang; Qi Wang; Zheng Wang; Dong Zhang; Min Yang

Minimizing bromate formation by adding H2O2 is one major option for bromide-containing source water when applying ozone in drinking water. However, difference in background water quality can have a significant influence on bromate depression. In this study, three bromide-bearing source waters (YZ, HR and HP) were selected to investigate bromate depression during the H2O2-ozonation process. The results showed that there was strong correlation between bromate formation and molecular ozone consumption during ozonation process for the three waters. Compared to YZ and HR, ozone was consumed quickly within about 10 min for HP water, inducing lower bromate formation during ozonation process. In the initial step of bromide oxidation, molecular ozone oxidation was responsible for more than 80% of oxidation, much higher than that by hydroxyl radicals. Specifically, 94% of the oxidation of bromide occurred with ozone for YZ water, which might be attributed to the low concentration of organic matter in the water. The residual molecular ozone would be a restrictive factor and affect the bromate formation significantly. For YZ and HP water, as H2O2/O3 (g/g) increased to 0.5, the ozone decomposition rate increased 61 times and 7.2 times respectively, which resulted in difference in bromate depression performance when applying H2O2. Humic acid and tyrosine in water were confirmed to have effects on bromate formation and depression after H2O2 addition. This study could elucidate the different bromate depression effects occurring in different source waters when adding H2O2, which will provide an informative guide for bromate control in drinking water treatment.
更新日期:2020-03-26

 

全部期刊列表>>
聚焦肿瘤,探索癌症
欢迎探索2019年最具下载量的材料科学论文
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
舒伟
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug