当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of pump power on performance analysis of photovoltaic thermal system using CNT nanofluid
Solar Energy ( IF 6.7 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.solener.2020.03.061
S. Rahmanian , A. Hamzavi

Abstract In this study, a numerical simulation has been accomplished to investigate the performance of a photovoltaic thermal system (PVT) with respect to the energy consumption of fluid circulating. Three dimensional numerical models of the PVT system were conducted in ANSYS Fluent software using water-CNT nanofluid as working fluid. Three configurations of heat collectors were modeled to select the more efficient design for collecting the heat of the PV module. By applying the duct channel heat collector, the effects of CNT concentration and nanofluid flow rate on the electrical and thermal efficiency of PVT system were studied. With flow rate of 50 L/h of 0.1 v/v% CNT-nanofluid, the electrical efficiency of PVT system increased 11% in comparison to PV system at ambient temperature of 40 °C. According to the inconsistency of thermophysical properties of nanofluid, a sensitivity analysis was conducted to indicate the impact intensity of nanofluid thermal conductivity. It indicated that the application of a 15 W pump in PVT system decreased the electrical efficiency from around 13.9% to 12.9%. A coefficient of cooling efficiency (CCE) is introduced to compare the extra gain electrical energy with the energy consumption of the pumping system. By increasing the thermal conductivity of nanofluid, the CCE increased from 0.985 for 25 W pump to 1.015 for 20 W pump. Two practical methods were suggested and investigated with transient simulation to decrease the energy consumption of the pumping process up to 50%.

中文翻译:

泵浦功率对CNT纳米流体光伏热力系统性能分析的影响

摘要 在本研究中,通过数值模拟研究了光伏热系统 (PVT) 在流体循环能耗方面的性能。PVT系统的三维数值模型是在ANSYS Fluent软件中使用水-碳纳米管纳米流体作为工作流体进行的。对三种集热器配置进行建模,以选择更有效的设计来收集 PV 模块的热量。应用管道通道集热器,研究了CNT浓度和纳米流体流速对PVT系统电效率和热效率的影响。在 0.1 v/v% CNT-纳米流体的流速为 50 L/h 时,PVT 系统的电效率与环境温度为 40 °C 的 PV 系统相比提高了 11%。针对纳米流体热物理性质的不一致性,进行了灵敏度分析,表明纳米流体热导率的影响强度。这表明在 PVT 系统中应用 15 W 泵将电效率从 13.9% 左右降低到 12.9%。引入冷却效率系数 (CCE) 来比较额外的增益电能与泵系统的能耗。通过增加纳米流体的热导率,CCE 从 25 W 泵的 0.985 增加到 20 W 泵的 1.015。提出了两种实用的方法,并通过瞬态模拟进行了研究,以将泵送过程的能耗降低 50%。这表明在 PVT 系统中应用 15 W 泵将电效率从 13.9% 左右降低到 12.9%。引入冷却效率系数 (CCE) 来比较额外的增益电能与泵系统的能耗。通过增加纳米流体的热导率,CCE 从 25 W 泵的 0.985 增加到 20 W 泵的 1.015。提出了两种实用的方法,并通过瞬态模拟进行了研究,以将泵送过程的能耗降低 50%。这表明在 PVT 系统中应用 15 W 泵将电效率从 13.9% 左右降低到 12.9%。引入冷却效率系数 (CCE) 来比较额外的增益电能与泵系统的能耗。通过增加纳米流体的热导率,CCE 从 25 W 泵的 0.985 增加到 20 W 泵的 1.015。提出了两种实用的方法,并通过瞬态模拟进行了研究,以将泵送过程的能耗降低 50%。通过增加纳米流体的热导率,CCE 从 25 W 泵的 0.985 增加到 20 W 泵的 1.015。提出了两种实用的方法,并通过瞬态模拟进行了研究,以将泵送过程的能耗降低 50%。通过增加纳米流体的热导率,CCE 从 25 W 泵的 0.985 增加到 20 W 泵的 1.015。提出了两种实用的方法,并通过瞬态模拟进行了研究,以将泵送过程的能耗降低 50%。
更新日期:2020-05-01
down
wechat
bug