当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode.
Journal of Colloid and Interface Science ( IF 9.9 ) Pub Date : 2020-03-25 , DOI: 10.1016/j.jcis.2020.03.092
Celia Hernández-Rentero 1 , Vittorio Marangon 2 , Mara Olivares-Marín 3 , Vicente Gómez-Serrano 4 , Álvaro Caballero 1 , Julián Morales 1 , Jusef Hassoun 5
Affiliation  

Disordered carbons derived from biomass are herein efficiently used as an alternative anode in lithium-ion battery. Carbon precursor obtained from cherry pit is activated by using either KOH or H3PO4, to increase the specific surface area and enable porosity. Structure, morphology and chemical characteristics of the activated carbons are investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetry (TG), Raman spectroscopy, nitrogen and mercury porosimetry. The electrodes are studied in lithium half-cell by galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The study evidences substantial effect of chemical activation on the carbon morphology, electrode resistance, and electrochemical performance. The materials reveal the typical profile of disordered carbon with initial irreversibility vanishing during cycles. Carbons activated by H3PO4 show higher capacity at the lower C-rates, while those activated by KOH reveal improved reversible capacity at the high currents, with efficiency approaching 100% upon initial cycles, and reversible capacity exceeding 175 mAh g-1. Therefore, the carbons and LiFePO4 cathode are combined in lithium-ion cells delivering 160 mAh g-1 at 2.8 V, with a retention exceeding 95% upon 200 cycles at C/3 rate. Hence, the carbons are suggested as environmentally sustainable anode for Li-ion battery.

中文翻译:

使用生物质衍生碳作为环境可持续阳极的替代锂离子电池。

源自生物质的无序碳在本文中有效地用作锂离子电池中的替代阳极。通过使用KOH或H3PO4活化从樱桃坑获得的碳前体,以增加比表面积并实现孔隙率。通过X射线衍射(XRD),透射电子显微镜(TEM),扫描电子显微镜(SEM),热重分析(TG),拉曼光谱,氮和汞孔隙率法研究了活性炭的结构,形态和化学特性。通过恒电流循环,循环伏安法和电化学阻抗谱(EIS)研究了锂半电池中的电极。这项研究证明化学活化对碳形态,电极电阻和电化学性能具有重大影响。该材料揭示了无序碳的典型特征,在循环过程中初始不可逆性消失了。H3PO4活化的碳在较低的C速率下显示出更高的容量,而KOH活化的碳在大电流下显示出可逆容量的提高,初始循环时效率接近100%,可逆容量超过175 mAh g-1。因此,碳和LiFePO4阴极结合在锂离子电池中,在2.8 V电压下可提供160 mAh g-1,在C / 3速率下200次循环时,其保留率超过95%。因此,碳被认为是锂离子电池在环境上可持续的阳极。而被KOH激活的电池在高电流下显示出改善的可逆容量,初始循环时效率接近100%,可逆容量超过175 mAh g-1。因此,碳和LiFePO4阴极结合在锂离子电池中,在2.8 V电压下提供160 mAh g-1的电导率,在200次循环中以C / 3速率保持超过95%。因此,碳被认为是锂离子电池在环境上可持续的阳极。而被KOH激活的电池在高电流下显示出改善的可逆容量,初始循环时效率接近100%,可逆容量超过175 mAh g-1。因此,碳和LiFePO4阴极结合在锂离子电池中,在2.8 V电压下可提供160 mAh g-1,在C / 3速率下200次循环时,其保留率超过95%。因此,碳被认为是锂离子电池在环境上可持续的阳极。
更新日期:2020-03-26
down
wechat
bug