当前位置: X-MOL 学术Syst. Control Lett. › 论文详情
Nonlinear robustified stochastic consensus seeking
Systems & Control Letters ( IF 2.624 ) Pub Date : 2020-03-25 , DOI: 10.1016/j.sysconle.2020.104667
Srdjan S. Stanković; Marko Beko; Miloš S. Stanković

In this paper we propose a novel stochastic consensus seeking algorithm based on the introduction of a nonlinear transformation aimed at robustification with respect to noise influence. The introduced nonlinear transformation is selected according to the methodology of stochastic approximation and robust statistics. The proposed algorithm represents a general nonlinear stochastic consensus seeking scheme, not yet treated in the literature. It provides a significant improvement over the linear algorithms from the point of view of robustness to noise, ensuring better convergence rate and lower sensitivity of the limit state value at consensus. One of the main contributions of the paper is the proof that the algorithm converges almost surely to consensus under general conditions. A detailed analysis of the limit state value at consensus is provided together with an insight into achievable convergence rate. Illustrative simulation results are also provided, demonstrating great advantages of the proposed algorithm compared to the existing consensus schemes.
更新日期:2020-03-26

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug