当前位置: X-MOL 学术Appl. Soft Comput. › 论文详情
Statistical and machine learning models in credit scoring: A systematic literature survey
Applied Soft Computing ( IF 4.873 ) Pub Date : 2020-03-25 , DOI: 10.1016/j.asoc.2020.106263
Xolani Dastile; Turgay Celik; Moshe Potsane

In practice, as a well-known statistical method, the logistic regression model is used to evaluate the credit-worthiness of borrowers due to its simplicity and transparency in predictions. However, in literature, sophisticated machine learning models can be found that can replace the logistic regression model. Despite the advances and applications of machine learning models in credit scoring, there are still two major issues: the incapability of some of the machine learning models to explain predictions; and the issue of imbalanced datasets. As such, there is a need for a thorough survey of recent literature in credit scoring. This article employs a systematic literature survey approach to systematically review statistical and machine learning models in credit scoring, to identify limitations in literature, to propose a guiding machine learning framework, and to point to emerging directions. This literature survey is based on 74 primary studies, such as journal and conference articles, that were published between 2010 and 2018. According to the meta-analysis of this literature survey, we found that in general, an ensemble of classifiers performs better than single classifiers. Although deep learning models have not been applied extensively in credit scoring literature, they show promising results.
更新日期:2020-03-26

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug