当前位置: X-MOL 学术arXiv.cs.GT › 论文详情
Mislearning from Censored Data: The Gambler's Fallacy in Optimal-Stopping Problems
arXiv - CS - Computer Science and Game Theory Pub Date : 2018-03-21 , DOI: arxiv-1803.08170
Kevin He

I study endogenous learning dynamics for people expecting systematic reversals from random sequences - the "gambler's fallacy." Biased agents face an optimal-stopping problem. They are uncertain about the underlying distribution and learn its parameters from predecessors. Agents stop when early draws are "good enough," so predecessors' experience contain negative streaks but not positive streaks. Since biased agents understate the likelihood of consecutive below-average draws, society converges to over-pessimistic beliefs about the distribution's mean and stops too early. Agents uncertain about the distribution's variance overestimate it to an extent that depends on predecessors' stopping thresholds. Subsidizing search partially mitigates long-run belief distortions.
更新日期:2020-03-24

 

全部期刊列表>>
聚焦肿瘤,探索癌症
欢迎探索2019年最具下载量的材料科学论文
论文语言润色服务
宅家赢大奖
如何将化学应用到可持续发展目标中
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
舒伟
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug