当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
A proof of the Total Coloring Conjecture
arXiv - CS - Discrete Mathematics Pub Date : 2020-03-21 , DOI: arxiv-2003.09658
T Srinivasa Murthy

A $total\ coloring$ of a graph G is a map $f:V(G) \cup E(G) \rightarrow \mathcal{K}$, where $\mathcal{K}$ is a set of colors, satisfying the following three conditions: 1. $f(u) \neq f(v)$ for any two adjacent vertices $u, v \in V(G)$; 2. $f(e) \neq f(e')$ for any two adjacent edges $e, e' \in E(G)$; and 3. $f(v) \neq f(e)$ for any vertex $v \in V(G)$ and any edge $e \in E(G)$ that is incident to same vertex $v$. The $total\ chromatic\ number$, $\chi''(G)$, is the minimum number of colors required for a $total\ coloring$ of $G$. Behzad and Vizing independently conjectured that, for any graph $G$, $\chi''(G)\leq \Delta + 2$. This is one of the classic mathematical unsolved problems. In this paper, we settle this classical conjecture by proving that the $total\ chromatic\ number$ $\chi''(G)$ of a graph is indeed bounded above by $\Delta+2$. Our novel approach involves algebraic settings over finite field $\mathbb{Z}_p$ and application of combinatorial nullstellensatz.
更新日期:2020-03-24

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug