当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Polynomial-time algorithm for Maximum Weight Independent Set on $P_6$-free graphs
arXiv - CS - Discrete Mathematics Pub Date : 2017-07-18 , DOI: arxiv-1707.05491
Andrzej Grzesik; Tereza Klimošová; Marcin Pilipczuk; Michał Pilipczuk

In the classic Maximum Weight Independent Set problem we are given a graph $G$ with a nonnegative weight function on vertices, and the goal is to find an independent set in $G$ of maximum possible weight. While the problem is NP-hard in general, we give a polynomial-time algorithm working on any $P_6$-free graph, that is, a graph that has no path on $6$ vertices as an induced subgraph. This improves the polynomial-time algorithm on $P_5$-free graphs of Lokshtanov et al. (SODA 2014), and the quasipolynomial-time algorithm on $P_6$-free graphs of Lokshtanov et al (SODA 2016). The main technical contribution leading to our main result is enumeration of a polynomial-size family $\mathcal{F}$ of vertex subsets with the following property: for every maximal independent set $I$ in the graph, $\mathcal{F}$ contains all maximal cliques of some minimal chordal completion of $G$ that does not add any edge incident to a vertex of $I$.
更新日期:2020-03-24

 

全部期刊列表>>
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
中洪博元
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
郭东升
汪铭
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug