当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Treewidth-Pliability and PTAS for Max-CSPs
arXiv - CS - Discrete Mathematics Pub Date : 2019-11-08 , DOI: arxiv-1911.03204
Miguel Romero; Marcin Wrochna; Stanislav Živný

We identify a sufficient condition, treewidth-pliability, that gives a polynomial-time approximation scheme (PTAS) for a large class of Max-2-CSPs parametrised by the class of allowed constraint graphs (with arbitrary constraints on an unbounded alphabet). Our result applies more generally to the maximum homomorphism problem between two rational-valued structures. The condition unifies the two main approaches for designing PTASes. One is Baker's layering technique, which applies to sparse graphs such as planar or excluded-minor graphs. The other is based on Szemer\'{e}di's regularity lemma and applies to dense graphs. We extend the applicability of both techniques to new classes of Max-CSPs. Treewidth-pliability turns out to be a robust notion that can be defined in several equivalent ways, including characterisations via size, treedepth, or the Hadwiger number. We show connections to the notions of fractional-treewidth-fragility from structural graph theory, hyperfiniteness from the area of property testing, and regularity partitions from the theory of dense graph limits. These may be of independent interest. In particular we show that a monotone class of graphs is hyperfinite if and only if it is fractionally-treewidth-fragile and has bounded degree.
更新日期:2020-03-24

 

全部期刊列表>>
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
中洪博元
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
郭东升
汪铭
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug