当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis
Advanced Materials ( IF 29.4 ) Pub Date : 2020-03-23 , DOI: 10.1002/adma.202000086
Siwei Li 1 , Peng Miao 1 , Yuanyuan Zhang 1 , Jie Wu 1 , Bin Zhang 1 , Yunchen Du 1 , Xijiang Han 1 , Jianmin Sun 1 , Ping Xu 1
Affiliation  

Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion.

中文翻译:

等离子纳米结构增强光催化和电催化的最新进展

等离子纳米材料与催化活性表面结合可以为各种催化应用提供独特的机会,其中可以采用在适当的光激发下产生的表面等离激元来驱动和/或促进各种化学反应。简要介绍了局部表面等离激元共振以及高效等离激元纳米结构的最新设计和制造,包括等离激元金属纳米结构和金属/半导体异质结构。利用这些等离激元纳米结构,以下重点总结了等离激元驱动的光化学反应(偶联反应,O 2分解和氧化反应,H 2分解和氢化反应,N 2固定和NH 3分解,以及CO 2还原)和等离激元增强的电催化反应(氢释放反应,氧还原反应,氧释放反应,醇氧化反应和CO 2还原)。讨论了理解表面等离子体激元的潜在机理的理论和实验方法。最后,对能量转换和存储领域中等离激元纳米材料和等离激元相关化学的剩余挑战和未来机会进行了适当的讨论和展望。
更新日期:2020-03-23
down
wechat
bug