当前位置: X-MOL 学术IEEE Access › 论文详情
Neural Networks-Aided Insider Attack Detection for the Average Consensus Algorithm
IEEE Access ( IF 4.098 ) Pub Date : 2020-03-04 , DOI: 10.1109/access.2020.2978458
Gangqiang Li; Sissi Xiaoxiao Wu; Shengli Zhang; Qiang Li

To support the big-data processing needs of large-scale deployments of smart devices, there is significant interest in moving from cloud-computing to multi-agent (fog-computing) models, given these algorithms scalability and self-healing properties with respect to nodes and link failures. However, these algorithms are often based on the average consensus primitive, which is, unfortunately, vulnerable to data injection attacks. Recognizing this challenge, this work proposes three novel methods for detecting and localizing adversarial nodes using neural network (NN) models. The methods proposed are based on fully distributed algorithms, wherein each node locally updates its local states by exchanging information with its neighbors without supervision. Compared to the state-of-the-art, the proposed approach leverages the automatic learning characteristics of NN to reduce the dependence on pre-designed models and human expertise in complex internal attack scenarios. Simulation results show that the NN-based methods can significantly improve the attacker detection and localization performance.
更新日期:2020-03-24

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug