当前位置: X-MOL 学术IEEE Access › 论文详情
Association Rule Mining Method Based on the Similarity Metric of Tuple-Relation in Indoor Environment
IEEE Access ( IF 4.098 ) Pub Date : 2020-03-16 , DOI: 10.1109/access.2020.2980952
Naixia Mou; Hongen Wang; Hengcai Zhang; Xin Fu

Association rules can detect the association pattern between POIs (point of interest) and serve the application of indoor location. In this paper, a new index, tuple-relation, is defined, which reflects the association strength between POI sets in indoor environment. This index considers the potential association information such as spatial and semantic information between indoor POI sets. On this basis, a new R-FP-growth (tuple-relation frequent pattern growth) algorithm for mining association rules in indoor environment is proposed, which makes comprehensive use of the co-occurrence probability, conditional probability, and multiple potential association information among POI sets, to form a new support-confidence-relation constraint framework and to improve the quality and application value of mining results. Experiments are performed, using real Wi-Fi positioning trajectory data from a shopping mall. Experimental results show that the tuple-relation calculation method based on cosine similarity has the best effect, with an accuracy of 87%, and 19% higher than that of the traditional FP-growth algorithm.
更新日期:2020-03-24

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug