当前位置: X-MOL 学术IEEE Access › 论文详情
A Disease Index for Efficiently Detecting Wheat Fusarium Head Blight Using Sentinel-2 Multispectral Imagery
IEEE Access ( IF 4.098 ) Pub Date : 2020-03-12 , DOI: 10.1109/access.2020.2980310
Linyi Liu; Yingying Dong; Wenjiang Huang; Xiaoping Du; Binyuan Ren; Linsheng Huang; Qiong Zheng; Huiqin Ma

Rapid, non-destructive detection of wheat Fusarium head blight (FHB) is an important tool for disease control. Red-edge (RE) is a prominent spectral feature for determining crop conditions with the potential to enhance the accuracy of monitoring FHB regionally. This study explored the potential of RE for FHB monitoring based on Sentinel-2 Multispectral Instrument (MSI) data. The novel red-edge head blight index (REHBI) was developed to detect FHB at a regional scale. Hyperspectral data at the canopy scale was integrated to simulate Sentinel-2 multispectral reflectance using the relative spectral response (RSR) function of the sensor. Then, many differential and ratio combinations of Sentinel-2 bands that were sensitive to FHB severity were selected. REHBI was established based on these basic vegetation indexes (VIs), and the model developed from REHBI performed best in monitoring FHB severity ( $R^{2} = 0.82$ , RMSE = 10.1). Additionally, the infected canopies with disease index (DI) values between 10 and 50 were classified as slightly diseased canopies. Ordinary least square (OLS) was used to test the performance of REHBI and two conventional VIs, i.e., OSAVI and RDVI, in monitoring slightly diseased canopies; REHBI outperformed these alternatives ( $R^{2}= 0.69$ , RMSE = 3.6). To approximate real agricultural conditions, Poisson noise was added to the simulated Sentinel-2 multispectral data and generalized performance of VIs was evaluated again; REHBI still had the highest $R^{2}$ and lowest RMSE values (0.74 and 12.6, respectively). Finally, to validate REHBI’s ability to detect FHB infection in agricultural production, it was applied to monitoring FHB in the wheat planting areas of Changfeng and Dingyuan counties from Sentinel-2 imagery. Generally, REHBI performed better in disease monitoring than OSAVI and RDVI. The overall accuracy was up to 78.6%, and the kappa coefficient was 0.51. Experimental results demonstrate that REHBI can be used to monitor FHB.
更新日期:2020-03-24

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug