当前位置: X-MOL 学术IEEE Access › 论文详情
A New Real-Time Lucky Imaging Algorithm and its Implementation Techniques
IEEE Access ( IF 4.098 ) Pub Date : 2020-03-16 , DOI: 10.1109/access.2020.2980947
Jinliang Wang; Binhua Li; Kai Xing

Lucky imaging is a high-angular resolution astronomical image reconstruction technique that can effectively reduce the impact of atmospheric turbulence on image quality and improve the imaging resolution of ground-based telescopes. Its key steps include image selection, registration and superposition. However, the lucky imaging algorithms based on a central processing unit (CPU) encounter difficulty accomplishing real-time processing; thus, they are post-processing methods and cannot meet the needs of on-site observers. Taking advantage of the parallelism and flexibility of the field programmable gate array (FPGA), this paper presents a new real-time lucky imaging algorithm that features real-time processing and dynamic updating and displaying. The algorithm consists of a dynamic sorting-free image selection algorithm, an improved registration and storage method, a parallel superposition algorithm, a parallel preprocessing method for noise suppression and cosmic ray removal, and a dynamic multithreshold display scheme. The simulation results show that the algorithm is feasible, effective and efficient. Compared with other lucky imaging algorithms based on FPGAs, this algorithm shows great advantages in clock consumption and on-chip resource consumption. Furthermore, it can be implemented on a small or medium-size development board of an FPGA. Moreover, the implemented FPGA system can perform real-time and dynamic lucky imaging for more than 10,000 frames of short-exposure images with an original format of $512\times 512$ pixels continuously. The experimental results not only show the validity of the proposed algorithm but also demonstrate the feasibility of the proposed implementation techniques for the FPGA-based algorithm.
更新日期:2020-03-24

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug