当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
BaCe0.7–xZr0.2Y0.1FexO3–δ derived from proton-conducting electrolytes: A way of designing chemically compatible cathodes for solid oxide fuel cells
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.jallcom.2020.154895
Liana R. Tarutina , Gennady K. Vdovin , Julia G. Lyagaeva , Dmitry A. Medvedev

Abstract The present study describes the rational engineering, preparation and characterisation of new mixed ionic-electronic conductors (MIECs) having great potential for application in solid oxide fuel cells (SOFCs) based on proton-conducting electrolytes. The developed MIECs are derived from promising Ba(Ce,Zr)O3-materials doped with iron as a transition element: BaCe0.7–xZr0.2Y0.1FexO3–δ (x = 0–0.7, Δx = 0.1). The comprehensive analysis of the functional properties (crystal structure, densification, microstructure, defect structure, thermal expansion behaviour, electrical conductivity) indicate that a moderate iron content is beneficial in order to achieve a certain compromise. In detail, the gradual Fe-doping results in an enhancement of transport properties (including, ionic-electronic conductivity level) and deterioration of mechanical characteristics (an increase of average thermal expansion coefficient values). The composition with x = 0.6, identified as more optimal, was used as a cathode for an intermediate-temperature SOFC; this cathode displays a satisfactory polarisation resistance level, 0.21 Ω cm2 at 700 °C, without the use of any additional electroactivation technique. The obtained results indicate that BaCe 0.7–xZr0.2Y0.1FexO3–δ MIECs having one of the highest chemical compatibility with state-of-the-art proton-conducting electrolytes can be considered as advanced electrodes for designing new solid oxide electrochemical devices with prolonged and stable operation mode.

中文翻译:

BaCe0.7–xZr0.2Y0.1FexO3–δ 源自质子传导电解质:一种为固体氧化物燃料电池设计化学相容阴极的方法

摘要 本研究描述了新型混合离子电子导体 (MIEC) 的合理工程、制备和表征,该导体在基于质子传导电解质的固体氧化物燃料电池 (SOFC) 中具有巨大的应用潜力。开发的 MIEC 源自有前途的 Ba(Ce,Zr)O3 材料,掺杂铁作为过渡元素:BaCe0.7–xZr0.2Y0.1FexO3–δ (x = 0–0.7, Δx = 0.1)。对功能特性(晶体结构、致密化、微观结构、缺陷结构、热膨胀行为、电导率)的综合分析表明,适度的铁含量有利于实现一定的折衷。详细地说,逐渐的 Fe 掺杂导致传输特性的增强(包括,离子电子电导率水平)和机械特性恶化(平均热膨胀系数值增加)。x = 0.6 的组合物被确定为更佳,用作中温 SOFC 的阴极;该阴极在 700 °C 下显示出令人满意的极化电阻水平,0.21 Ω cm2,无需使用任何额外的电激活技术。获得的结果表明 BaCe 0.7–xZr0.2Y0.1FexO3–δ MIECs 与最先进的质子传导电解质具有最高的化学相容性之一,可以被认为是用于设计新的固体氧化物电化学装置的先进电极。和稳定的运行模式。用作中温 SOFC 的阴极;该阴极在 700 °C 下显示出令人满意的极化电阻水平,0.21 Ω cm2,无需使用任何额外的电激活技术。获得的结果表明 BaCe 0.7–xZr0.2Y0.1FexO3–δ MIECs 与最先进的质子传导电解质具有最高的化学相容性之一,可以被认为是用于设计新的固体氧化物电化学装置的先进电极。和稳定的运行模式。用作中温 SOFC 的阴极;该阴极在 700 °C 下显示出令人满意的极化电阻水平,0.21 Ω cm2,无需使用任何额外的电激活技术。获得的结果表明 BaCe 0.7–xZr0.2Y0.1FexO3–δ MIECs 与最先进的质子传导电解质具有最高的化学相容性之一,可以被认为是用于设计新的固体氧化物电化学装置的先进电极。和稳定的运行模式。
更新日期:2020-08-01
down
wechat
bug