当前位置: X-MOL 学术Comput. Math. Appl. › 论文详情
A family of quadratic finite volume element schemes over triangular meshes for elliptic equations
Computers & Mathematics with Applications ( IF 2.811 ) Pub Date : 2019-12-04 , DOI: 10.1016/j.camwa.2019.11.017
Yanhui Zhou; Jiming Wu

In this paper, we construct and analyze a family of quadratic finite volume element schemes over triangular meshes for elliptic equations. This family of schemes cover some existing quadratic schemes. For these schemes, by element analysis, we find that each element matrix can be split as two parts : the first part is the element stiffness matrix of the standard quadratic finite element method, while the second part is a tensor product of two vectors. Thanks to this finding, we obtain a sufficient condition to ensure the existence, uniqueness and coercivity result of the finite volume element solution on triangular meshes. More interesting is that, the above condition has a simple and analytic expression, and only relies on the interior angles of each triangular element. Based on this result, a minimum angle condition, better than some existing ones, can be obtained. Moreover, based on the coercivity result, we prove that the finite volume element solution converges to the exact solution with an optimal convergence rate in H1 norm. Finally, some numerical examples are provided to validate the theoretical findings.
更新日期:2020-03-24

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug