当前位置: X-MOL 学术Comput. Math. Appl. › 论文详情
Error analysis of a finite element method with GMMP temporal discretisation for a time-fractional diffusion equation
Computers & Mathematics with Applications ( IF 2.811 ) Pub Date : 2019-12-23 , DOI: 10.1016/j.camwa.2019.12.006
Chaobao Huang; Martin Stynes

A time-fractional initial–boundary value problem is considered, where the spatial domain has dimension d∈{1,2,3}, the spatial differential operator is a standard elliptic operator, and the time derivative is a Caputo derivative of order α∈(0,1). To discretise in space we use a standard piecewise-polynomial finite element method, while for the temporal discretisation the GMMP scheme (a variant of the Grünwald-Letnikov scheme) is used on a uniform mesh. The analysis of the GMMP scheme for solutions that exhibit a typical weak singularity at the initial time t=0 has not previously been considered in the literature. A global convergence result is derived in L∞(L2), then a more delicate analysis of the error in this norm shows that, away from t=0, the method attains optimal-rate convergence. Numerical results confirm the sharpness of the theoretical error bounds.
更新日期:2020-03-24

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug