当前位置: X-MOL 学术Appl. Soft Comput. › 论文详情
Imbalanced credit risk evaluation based on multiple sampling, multiple kernel fuzzy self-organizing map and local accuracy ensemble
Applied Soft Computing ( IF 4.873 ) Pub Date : 2020-03-24 , DOI: 10.1016/j.asoc.2020.106262
Lu Wang; Yuangao Chen; Hui Jiang; Jianrong Yao

Credit risk evaluation model is generally regarded as a valid method for business risk management. Although the most of literatures about credit risk evaluation always use class-balanced data as sample sets, the study on class-imbalanced datasets is more suitable for actual situation. This paper proposes a new ensemble model to evaluate class-imbalanced credit risk, which integrates multiple sampling, multiple kernel fuzzy self-organizing map and local accuracy ensemble. To preprocess imbalanced sample sets of credit risk evaluation, multiple sampling approaches (synthetic minority over-sampling technique, under sampling and hybrid sampling) are improved and integrated to acquire balanced datasets. To construct more suitable base classifiers, multiple kernel functions (Gaussian, Polynomial and Sigmoid) respectively are used to improve fuzzy self-organizing map. Then, the balanced sample sets are respectively processed by the improved base classifiers to acquire different prediction results. The local accuracy ensemble method is employed to dynamically synthesize these prediction results to obtain final result. The new ensemble model can further avoid over-fitting and information loss, be more suitable to handle the dataset including different financial indicators, and acquire the stable and satisfactory prediction result for imbalanced credit risk evaluation In the empirical research, this paper adopts the financial data from Chinese listed companies, and makes the comparative analysis with the relative models step by step. The results can prove that the new ensemble model presented by this article has better performance than other methods in terms of evaluating the imbalanced credit risk.
更新日期:2020-03-24

 

全部期刊列表>>
聚焦肿瘤,探索癌症
欢迎探索2019年最具下载量的材料科学论文
论文语言润色服务
宅家赢大奖
如何将化学应用到可持续发展目标中
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
舒伟
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug