当前位置: X-MOL 学术Inform. Sci. › 论文详情
Adaptive neural network control for time-varying state constrained nonlinear stochastic systems with input saturation
Information Sciences ( IF 5.524 ) Pub Date : 2020-03-23 , DOI: 10.1016/j.ins.2020.03.055
Qidan Zhu; Yongchao Liu; Guoxing Wen

This paper investigates the tracking control issue of nonlinear stochastic systems subject to time-varying full state constraints and input saturation. By employing both neural network-based approximator and backstepping technique, a novel adaptive neural network (NN) control approach is presented on the basis of the time-varying barrier Lyapunov function. To surmount the influence of saturation nonlinearity, a Gaussian error function-based continuous differentiable saturation model is introduced such that the actual control in the final backstepping step can be achieved. The designed controller can not only achieve the tracking control objective, but also surmount the impact of input saturation to stochastic system performance. Meanwhile, the norm of NN weight vector is taken as estimated parameter, and it can alleviate computation burden. The presented controller can ensure that all the signals in the closed-loop system are bounded in probability and all state variables are restricted the predefined regions. Finally, simulation results are given to illustrate the effectiveness of the established controller.
更新日期:2020-03-24

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug