当前位置: X-MOL 学术J. Inst. Math. Jussieu › 论文详情
RANK TWO TOPOLOGICAL AND INFINITESIMAL EMBEDDED JUMP LOCI OF QUASI-PROJECTIVE MANIFOLDS
Journal of the Institute of Mathematics of Jussieu ( IF 1.400 ) Pub Date : 2018-02-15 , DOI: 10.1017/s1474748018000063
Stefan Papadima; Alexander I. Suciu

We study the germs at the origin of $G$ -representation varieties and the degree 1 cohomology jump loci of fundamental groups of quasi-projective manifolds. Using the Morgan–Dupont model associated to a convenient compactification of such a manifold, we relate these germs to those of their infinitesimal counterparts, defined in terms of flat connections on those models. When the linear algebraic group $G$ is either $\text{SL}_{2}(\mathbb{C})$ or its standard Borel subgroup and the depth of the jump locus is 1, this dictionary works perfectly, allowing us to describe in this way explicit irreducible decompositions for the germs of these embedded jump loci. On the other hand, if either $G=\text{SL}_{n}(\mathbb{C})$ for some $n\geqslant 3$ , or the depth is greater than 1, then certain natural inclusions of germs are strict.
更新日期:2020-03-24

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug