当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A method for in situ measurement of directional and spatial radiosity distributions from complex-shaped solar thermal receivers
Solar Energy ( IF 6.7 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.solener.2020.02.097
Ye Wang , Wojciech Lipiński , John Pye

Abstract A methodology for in-situ measurements of radiative reflection and emission losses from a solar thermal receiver under high-flux irradiation is demonstrated. It combines radiosity analysis with photogrammetry and image recognition techniques to obtain directional and spatial radiosity distributions over receiver surfaces with a simple setup, mainly consisting of a camera. A CCD camera can acquire the radiosity in the visible range, which predominantly captures reflected solar irradiation. A thermal infrared camera can acquire the radiosity in the infrared range, which predominantly captures emission losses from the hot receiver surfaces. A hyperspectral camera can be used to obtain spectrally resolved results across a range of wavelengths. Images are taken from different directions in front of the receiver, and processed in software to obtain a point cloud via three-dimensional reconstruction, allowing the image data to be mapped onto a receiver mesh model. The receiver can be any shape, including those with complex-shaped cavity-like geometries exhibiting surface occlusion and light-trapping effects. These camera-based non-contact measurements allow for the performance of a receiver to be evaluated without interrupting its normal operation. The feasibility of the method is tested by quantifying the reflection losses from a multi-cavity tubular receiver under ~850 kW/m2 concentrated solar irradiation. The proof of concept is established by comparing the measured results with those from Monte-Carlo ray-tracing simulations.

中文翻译:

一种从复杂形状的太阳能热接收器原位测量定向和空间辐射分布的方法

摘要 演示了一种在高通量辐照下对太阳能热接收器的辐射反射和发射损失进行原位测量的方法。它将辐射分析与摄影测量和图像识别技术相结合,通过简单的设置(主要由相机组成)获得接收器表面的方向和空间辐射分布。CCD 相机可以获取可见光范围内的光能传递,主要捕获反射的太阳辐射。热红外相机可以获取红外范围内的光能传递,主要捕获热接收器表面的发射损失。高光谱相机可用于获得跨波长范围的光谱解析结果。图像是从接收器前面的不同方向拍摄的,并在软件中处理以通过三维重建获得点云,从而将图像数据映射到接收器网格模型上。接收器可以是任何形状,包括那些具有复杂形状的腔状几何形状,表现出表面遮挡和光捕获效应。这些基于相机的非接触式测量允许在不中断其正常操作的情况下评估接收器的性能。该方法的可行性通过量化来自多腔管状接收器在 ~850 kW/m2 集中太阳辐射下的反射损失来测试。概念验证是通过将测量结果与蒙特卡罗光线追踪模拟的结果进行比较来建立的。接收器可以是任何形状,包括那些具有复杂形状的腔状几何形状,表现出表面遮挡和光捕获效应。这些基于相机的非接触式测量允许在不中断其正常操作的情况下评估接收器的性能。该方法的可行性通过量化来自多腔管状接收器在 ~850 kW/m2 集中太阳辐射下的反射损失来测试。概念验证是通过将测量结果与蒙特卡罗光线追踪模拟的结果进行比较来建立的。接收器可以是任何形状,包括那些具有复杂形状的腔状几何形状,表现出表面遮挡和光捕获效应。这些基于相机的非接触式测量允许在不中断其正常操作的情况下评估接收器的性能。该方法的可行性通过量化来自多腔管状接收器在 ~850 kW/m2 集中太阳辐射下的反射损失来测试。概念验证是通过将测量结果与蒙特卡罗光线追踪模拟的结果进行比较来建立的。该方法的可行性通过量化来自多腔管状接收器在 ~850 kW/m2 集中太阳辐射下的反射损失来测试。概念验证是通过将测量结果与蒙特卡罗光线追踪模拟的结果进行比较来建立的。该方法的可行性通过量化来自多腔管状接收器在 ~850 kW/m2 集中太阳辐射下的反射损失来测试。概念验证是通过将测量结果与蒙特卡罗光线追踪模拟的结果进行比较来建立的。
更新日期:2020-05-01
down
wechat
bug