当前位置: X-MOL 学术BBA Bioenerg. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetic advantage of forming respiratory supercomplexes.
Biochimica et Biophysica Acta (BBA) - Bioenergetics ( IF 4.3 ) Pub Date : 2020-03-19 , DOI: 10.1016/j.bbabio.2020.148193
Alexei Stuchebrukhov 1 , Jacob Schäfer 2 , Johan Berg 2 , Peter Brzezinski 2
Affiliation  

Components of respiratory chains in mitochondria and some aerobic bacteria assemble into larger, multiprotein membrane-bound supercomplexes. Here, we address the functional significance of supercomplexes composed of respiratory-chain complexes III and IV. Complex III catalyzes oxidation of quinol and reduction of water-soluble cytochrome c (cyt c), while complex IV catalyzes oxidation of the reduced cyt c and reduction of dioxygen to water. We focus on two questions: (i) under which conditions does diffusion of cyt c become rate limiting for electron transfer between these two complexes? (ii) is there a kinetic advantage of forming a supercomplex composed of complexes III and IV? To answer these questions, we use a theoretical approach and assume that cyt c diffuses in the water phase while complexes III and IV either diffuse independently in the two dimensions of the membrane or form supercomplexes. The analysis shows that the electron flux between complexes III and IV is determined by the equilibration time of cyt c within the volume of the intermembrane space, rather than the cyt c diffusion time constant. Assuming realistic relative concentrations of membrane-bound components and cyt c and that all components diffuse independently, the data indicate that electron transfer between complexes III and IV can become rate limiting. Hence, there is a kinetic advantage of bringing complexes III and IV together in the membrane to form supercomplexes.

中文翻译:

形成呼吸超复合物的动力学优势。

线粒体中的呼吸链成分和一些需氧细菌组装成更大的,多蛋白膜结合的超复合物。在这里,我们解决了由呼吸链复合物III和IV组成的超复合物的功能意义。配合物III催化喹诺醇的氧化和水溶性细胞色素c(cyt c)的还原,而配合物IV催化还原的cyt c的氧化和将双氧还原为水。我们关注两个问题:(i)在什么条件下,cyt c的扩散会成为限制这两种络合物之间电子转移的速率?(ii)形成由配合物III和IV组成的超配合物是否具有动力学优势?要回答这些问题,我们使用一种理论方法,并假设cyt c在水相中扩散,而络合物III和IV要么在膜的二维方向上独立扩散,要么形成超复合物。分析表明,配合物III和IV之间的电子通量取决于胞膜间空间内cyt c的平衡时间,而不是cyt c扩散时间常数。假设膜结合成分和cyt c的实际相对浓度以及所有成分均独立扩散,则数据表明,配合物III和IV之间的电子转移可能成为速率限制。因此,具有在膜中将复合物III和IV结合在一起以形成超复合物的动力学优势。分析表明,配合物III和IV之间的电子通量取决于胞膜间空间内cyt c的平衡时间,而不是cyt c扩散时间常数。假设膜结合成分和cyt c的实际相对浓度以及所有成分均独立扩散,则数据表明,配合物III和IV之间的电子转移可能成为速率限制。因此,具有在膜中将复合物III和IV结合在一起以形成超复合物的动力学优势。分析表明,配合物III和IV之间的电子通量取决于胞膜间空间内cyt c的平衡时间,而不是cyt c扩散时间常数。假设膜结合成分和cyt c的实际相对浓度以及所有成分均独立扩散,则数据表明,配合物III和IV之间的电子转移可能成为速率限制。因此,具有将络合物III和IV一起在膜中形成超络合物的动力学优势。数据表明,配合物III和IV之间的电子转移可以成为速率限制。因此,具有将络合物III和IV一起在膜中形成超级络合物的动力学优势。数据表明,配合物III和IV之间的电子转移可以成为速率限制。因此,具有将络合物III和IV一起在膜中形成超级络合物的动力学优势。
更新日期:2020-04-20
down
wechat
bug