当前位置: X-MOL 学术Biotechnol. Biofuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil.
Biotechnology for Biofuels ( IF 6.3 ) Pub Date : 2020-03-20 , DOI: 10.1186/s13068-020-01688-x
Tahereh Nematian 1 , Alireza Shakeri 1 , Zeinab Salehi 2 , Ali Akbar Saboury 3
Affiliation  

Background Microalgae, due to its well-recognized advantages have gained renewed interest as potentially good feedstock for biodiesel. Production of fatty acid methyl esters (FAMEs) as a type of biodiesel was carried out from Chlorella vulgaris bio-oil. Biodiesel was produced in the presence of nano-biocatalysts composed of immobilized lipase on functionalized superparamagnetic few-layer graphene oxide via a transesterification reaction. A hybrid of few-layer graphene oxide and Fe3O4 (MGO) was prepared and characterized. The MGO was functionalized with 3-aminopropyl triethoxysilane (MGO-AP) as well as with a couple of AP and glutaraldehyde (MGO-AP-GA). The Rhizopus oryzae lipase (ROL) was immobilized on MGO and MGO-AP using electrostatic interactions as well as on MGO-AP-GA using covalent bonding. The supports, MGO, MGO-AP, and MGO-AP-GA, as well as nano-biocatalyst, ROL/MGO, ROL/MGO-AP, and ROL/MGO-AP-GA, were characterized using FESEM, VSM, FTIR, and XRD. The few-layer graphene oxide was characterized using AFM and the surface charge of supports was evaluated with the zeta potential technique. The nano-biocatalysts assay was performed with an evaluation of kinetic parameters, loading capacity, relative activity, time-course thermal stability, and storage stability. Biodiesel production was carried out in the presence of nano-biocatalysts and their reusability was evaluated in 5 cycles of transesterification reaction. Results The AFM analysis confirmed the few-layer structure of graphene oxide and VSM also confirmed that all supports were superparamagnetic. The maximum loading of ROL (70.2%) was related to MGO-AP-GA. The highest biodiesel conversion of 71.19% achieved in the presence of ROL/MGO-AP-GA. Furthermore, this nano-biocatalyst could maintain 58.77% of its catalytic performance after 5 cycles of the transesterification reaction and was the best catalyst in the case of reusability. Conclusions In this study, the synthesized nano-biocatalyst based on bare and functionalized magnetic graphene oxide was applied and optimized in the process of converting microalgae bio-oil to biodiesel for the first time and compared with bare lipase immobilized on magnetic nanoparticles. Results showed that the loading capacity, kinetic parameters, thermal stability, and storage stability improved by the functionalization of MGO. The biocatalysts, which were prepared via covalent bonding immobilization of enzyme generally, showed better characteristics.

中文翻译:

固定在功能化超顺磁性几层氧化石墨烯上的脂肪酶作为一种高效的纳米生物催化剂,用于从小球藻生物油中生产生物柴油。

背景微藻,由于其公认的优势,作为生物柴油的潜在良好原料,已经获得了新的兴趣。脂肪酸甲酯 (FAME) 作为一种生物柴油的生产是从小球藻生物油中进行的。生物柴油是在由固定化脂肪酶组成的纳米生物催化剂存在下通过酯交换反应生产的。制备并表征了少层氧化石墨烯和 Fe3O4 (MGO) 的混合物。MGO 用 3-氨基丙基三乙氧基硅烷 (MGO-AP) 以及一对 AP 和戊二醛 (MGO-AP-GA) 官能化。使用静电相互作用将米根霉脂肪酶 (ROL) 固定在 MGO 和 MGO-AP 上,以及使用共价键将其固定在 MGO-AP-GA 上。支撑,MGO、MGO-AP 和 MGO-AP-GA,以及纳米生物催化剂 ROL/MGO、ROL/MGO-AP 和 ROL/MGO-AP-GA,使用 FESEM、VSM、FTIR 和 XRD 进行了表征。使用 AFM 表征了少层氧化石墨烯,并使用 zeta 电位技术评估了载体的表面电荷。通过对动力学参数、负载能力、相对活性、时程热稳定性和储存稳定性的评估来进行纳米生物催化剂测定。生物柴油生产是在纳米生物催化剂存在的情况下进行的,并在 5 个循环的酯交换反应中评估了它们的可重复使用性。结果 AFM 分析证实了氧化石墨烯的少层结构,VSM 也证实了所有载体都是超顺磁性的。ROL 的最大负荷(70.2%)与 MGO-AP-GA 有关。最高的生物柴油转化率为 71。在存在 ROL/MGO-AP-GA 的情况下达到 19%。此外,该纳米生物催化剂经过5个循环的酯交换反应后仍能保持58.77%的催化性能,是可重复使用情况下最好的催化剂。结论 本研究首次将基于裸露和功能化磁性氧化石墨烯的合成纳米生物催化剂应用于微藻生物油转化为生物柴油的过程中进行优化,并与固定在磁性纳米颗粒上的裸脂肪酶进行了比较。结果表明,MGO的功能化提高了负载能力、动力学参数、热稳定性和储存稳定性。一般通过酶的共价键固定化制备的生物催化剂表现出较好的特性。该纳米生物催化剂经过5个循环的酯交换反应后仍能保持58.77%的催化性能,是可重复使用情况下最好的催化剂。结论 本研究首次将基于裸露和功能化磁性氧化石墨烯的合成纳米生物催化剂应用于微藻生物油转化为生物柴油的过程中进行优化,并与固定在磁性纳米颗粒上的裸脂肪酶进行了比较。结果表明,MGO的功能化提高了负载能力、动力学参数、热稳定性和储存稳定性。一般通过酶的共价键固定化制备的生物催化剂表现出较好的特性。该纳米生物催化剂经过5个循环的酯交换反应后仍能保持58.77%的催化性能,是可重复使用情况下最好的催化剂。结论 本研究首次将基于裸露和功能化磁性氧化石墨烯的合成纳米生物催化剂应用于微藻生物油转化为生物柴油的过程中进行优化,并与固定在磁性纳米颗粒上的裸脂肪酶进行了比较。结果表明,MGO的功能化提高了负载能力、动力学参数、热稳定性和储存稳定性。一般通过酶的共价键固定化制备的生物催化剂表现出较好的特性。经过5个循环的酯交换反应,其催化性能达到77%,是可重复使用情况下最好的催化剂。结论 本研究首次将基于裸露和功能化磁性氧化石墨烯的合成纳米生物催化剂应用于微藻生物油转化为生物柴油的过程中进行优化,并与固定在磁性纳米颗粒上的裸脂肪酶进行了比较。结果表明,MGO的功能化提高了负载能力、动力学参数、热稳定性和储存稳定性。一般通过酶的共价键固定化制备的生物催化剂表现出较好的特性。经过5个循环的酯交换反应,其催化性能达到77%,是可重复使用情况下最好的催化剂。结论 本研究首次将基于裸露和功能化磁性氧化石墨烯的合成纳米生物催化剂应用于微藻生物油转化为生物柴油的过程中进行优化,并与固定在磁性纳米颗粒上的裸脂肪酶进行了比较。结果表明,MGO的功能化提高了负载能力、动力学参数、热稳定性和储存稳定性。一般通过酶的共价键固定化制备的生物催化剂表现出较好的特性。首次将基于裸露和功能化磁性氧化石墨烯的纳米生物催化剂应用于微藻生物油转化为生物柴油的过程中进行优化,并与固定在磁性纳米颗粒上的裸脂肪酶进行了比较。结果表明,MGO的功能化提高了负载能力、动力学参数、热稳定性和储存稳定性。一般通过酶的共价键固定化制备的生物催化剂表现出较好的特性。首次将基于裸露和功能化磁性氧化石墨烯的纳米生物催化剂应用于微藻生物油转化为生物柴油的过程中进行优化,并与固定在磁性纳米颗粒上的裸脂肪酶进行了比较。结果表明,MGO的功能化提高了负载能力、动力学参数、热稳定性和储存稳定性。一般通过酶的共价键固定化制备的生物催化剂表现出较好的特性。
更新日期:2020-04-22
down
wechat
bug