当前位置: X-MOL 学术arXiv.cs.CE › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strong Scaling of Numerical Solver for Supersonic Jet Flow Configuration
arXiv - CS - Computational Engineering, Finance, and Science Pub Date : 2020-03-19 , DOI: arxiv-2003.08746
Carlos Junqueira-Junior, Jo\~ao Luiz F. Azevedo, Jairo Panetta, William R. Wolf, and Sami Yamouni

Acoustics loads are rocket design constraints which push researches and engineers to invest efforts in the aeroacoustics phenomena which is present on launch vehicles. Therefore, an in-house computational fluid dynamics tool is developed in order to reproduce high-fidelity results of supersonic jet flows for aeroacoustic analogy applications. The solver is written using the large eddy simulation formulation that is discretized using a finite-difference approach and an explicit time integration. Numerical simulations of supersonic jet flows are very expensive and demand efficient high-performance computing. Therefore, non-blocking message passage interface protocols and parallel input/output features are implemented into the code in order to perform simulations which demand up to one billion degrees of freedom. The present work evaluates the parallel efficiency of the solver when running on a supercomputer with a maximum theoretical peak of 127.4 TFLOPS. Speedup curves are generated using nine different workloads. Moreover, the validation results of a realistic flow condition are also presented in the current work.

中文翻译:

超音速射流配置数值求解器的强标度

声学载荷是火箭设计的限制因素,它促使研究人员和工程师在运载火箭上存在的气动声学现象上投入大量精力。因此,开发了一种内部计算流体动力学工具,以便为气动声学类比应用重现超音速射流的高保真结果。求解器是使用大涡模拟公式编写的,该公式使用有限差分方法和显式时间积分进行离散化。超音速射流的数值模拟非常昂贵,需要高效的高性能计算。因此,在代码中实现了非阻塞消息通道接口协议和并行输入/输出功能,以执行需要多达 10 亿个自由度的模拟。目前的工作评估了求解器在最大理论峰值为 127.4 TFLOPS 的超级计算机上运行时的并行效率。加速曲线是使用九种不同的工作负载生成的。此外,当前工作中还提供了现实流动条件的验证结果。
更新日期:2020-03-23
down
wechat
bug